--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-german-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.8333588604686782 - name: Recall type: recall value: 0.8620088719898605 - name: F1 type: f1 value: 0.8474417880227396 - name: Accuracy type: accuracy value: 0.9292245320451997 --- # bert-german-ner This model is a fine-tuned version of [dbmdz/bert-base-german-cased](https://huggingface.co/dbmdz/bert-base-german-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.3196 - Precision: 0.8334 - Recall: 0.8620 - F1: 0.8474 - Accuracy: 0.9292 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 300 | 0.3617 | 0.7310 | 0.7733 | 0.7516 | 0.8908 | | 0.5428 | 2.0 | 600 | 0.2897 | 0.7789 | 0.8395 | 0.8081 | 0.9132 | | 0.5428 | 3.0 | 900 | 0.2805 | 0.8147 | 0.8465 | 0.8303 | 0.9221 | | 0.2019 | 4.0 | 1200 | 0.2816 | 0.8259 | 0.8498 | 0.8377 | 0.9260 | | 0.1215 | 5.0 | 1500 | 0.2942 | 0.8332 | 0.8599 | 0.8463 | 0.9285 | | 0.1215 | 6.0 | 1800 | 0.3053 | 0.8293 | 0.8619 | 0.8452 | 0.9287 | | 0.0814 | 7.0 | 2100 | 0.3190 | 0.8249 | 0.8634 | 0.8437 | 0.9267 | | 0.0814 | 8.0 | 2400 | 0.3196 | 0.8334 | 0.8620 | 0.8474 | 0.9292 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2