--- license: cc library_name: transformers model-index: - name: SOLAR-10.7b-Instruct-truthy-dpo results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.1 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.44 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.45 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 76.75 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.72 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 59.21 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo name: Open LLM Leaderboard --- # SOLAR-10.7b-Instruct-truthy-dpo ![orca-bagel](orca-bagel.png) This model is a finetune of [macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo](https://huggingface.co/macadeliccc/SOLAR-10.7b-Instruct-dpo) ## Process 1. I finetuned upstageai/Solar-10.7b-Instruct-v0.1 with 1 epoch of Intel/orca_dpo_pairs (12.4k samples) 2. I futher finetuned that model with 3 epochs of jondurbin/truthy-dpo-v0.1 (1.04k samples) 3. This process is experimental and the base model linked above is more tested at this time. ## GGUF Available [here](https://huggingface.co/macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo-GGUF) ## Evaluations ----Benchmark Complete---- + 2024-01-26 20:57:38 + Time taken: 25.4 mins + Prompt Format: ChatML + Model: macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo-GGUF + Score (v2): 74.11 + Parseable: 171.0 --------------- Batch completed Time taken: 25.5 mins --------------- | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |-----------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:| |[SOLAR-10.7b-Instruct-truthy-dpo](https://huggingface.co/macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo)| 48.69| 73.82| 76.81| 45.71| 61.26| ### AGIEval | Task |Version| Metric |Value| |Stderr| |------------------------------|------:|--------|----:|---|-----:| |agieval_aqua_rat | 0|acc |27.95|± | 2.82| | | |acc_norm|27.95|± | 2.82| |agieval_logiqa_en | 0|acc |42.40|± | 1.94| | | |acc_norm|42.24|± | 1.94| |agieval_lsat_ar | 0|acc |25.65|± | 2.89| | | |acc_norm|23.91|± | 2.82| |agieval_lsat_lr | 0|acc |54.12|± | 2.21| | | |acc_norm|54.51|± | 2.21| |agieval_lsat_rc | 0|acc |69.89|± | 2.80| | | |acc_norm|69.89|± | 2.80| |agieval_sat_en | 0|acc |80.10|± | 2.79| | | |acc_norm|80.10|± | 2.79| |agieval_sat_en_without_passage| 0|acc |50.00|± | 3.49| | | |acc_norm|49.51|± | 3.49| |agieval_sat_math | 0|acc |42.27|± | 3.34| | | |acc_norm|41.36|± | 3.33| Average: 48.69% ### GPT4All | Task |Version| Metric |Value| |Stderr| |-------------|------:|--------|----:|---|-----:| |arc_challenge| 0|acc |59.90|± | 1.43| | | |acc_norm|63.91|± | 1.40| |arc_easy | 0|acc |80.85|± | 0.81| | | |acc_norm|78.16|± | 0.85| |boolq | 1|acc |88.20|± | 0.56| |hellaswag | 0|acc |68.34|± | 0.46| | | |acc_norm|86.39|± | 0.34| |openbookqa | 0|acc |37.60|± | 2.17| | | |acc_norm|46.80|± | 2.23| |piqa | 0|acc |78.84|± | 0.95| | | |acc_norm|78.78|± | 0.95| |winogrande | 0|acc |74.51|± | 1.22| Average: 73.82% ### TruthfulQA | Task |Version|Metric|Value| |Stderr| |-------------|------:|------|----:|---|-----:| |truthfulqa_mc| 1|mc1 |61.81|± | 1.70| | | |mc2 |76.81|± | 1.42| Average: 76.81% ### Bigbench | Task |Version| Metric |Value| |Stderr| |------------------------------------------------|------:|---------------------|----:|---|-----:| |bigbench_causal_judgement | 0|multiple_choice_grade|50.53|± | 3.64| |bigbench_date_understanding | 0|multiple_choice_grade|63.14|± | 2.51| |bigbench_disambiguation_qa | 0|multiple_choice_grade|47.67|± | 3.12| |bigbench_geometric_shapes | 0|multiple_choice_grade|26.18|± | 2.32| | | |exact_str_match | 0.00|± | 0.00| |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|28.60|± | 2.02| |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|21.29|± | 1.55| |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|47.33|± | 2.89| |bigbench_movie_recommendation | 0|multiple_choice_grade|39.80|± | 2.19| |bigbench_navigate | 0|multiple_choice_grade|63.80|± | 1.52| |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|59.05|± | 1.10| |bigbench_ruin_names | 0|multiple_choice_grade|40.18|± | 2.32| |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|46.69|± | 1.58| |bigbench_snarks | 0|multiple_choice_grade|65.19|± | 3.55| |bigbench_sports_understanding | 0|multiple_choice_grade|72.41|± | 1.42| |bigbench_temporal_sequences | 0|multiple_choice_grade|60.30|± | 1.55| |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|25.76|± | 1.24| |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|17.43|± | 0.91| |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|47.33|± | 2.89| Average: 45.71% Average score: 61.26% Elapsed time: 02:16:03 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__SOLAR-10.7b-Instruct-truthy-dpo) | Metric |Value| |---------------------------------|----:| |Avg. |74.11| |AI2 Reasoning Challenge (25-Shot)|72.10| |HellaSwag (10-Shot) |88.44| |MMLU (5-Shot) |65.45| |TruthfulQA (0-shot) |76.75| |Winogrande (5-shot) |82.72| |GSM8k (5-shot) |59.21|