--- tags: - generated_from_keras_callback model-index: - name: madatnlp/kor-math-roberta-finetune results: [] --- # madatnlp/kor-math-roberta-finetune This model is a fine-tuned version of [klue/roberta-base](https://huggingface.co/klue/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7393 - Validation Loss: 0.7801 - Epoch: 45 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.6637 | 2.2056 | 0 | | 2.0866 | 1.6338 | 1 | | 1.7565 | 1.4797 | 2 | | 1.5604 | 1.4183 | 3 | | 1.4554 | 1.2678 | 4 | | 1.3784 | 1.2015 | 5 | | 1.2908 | 0.9909 | 6 | | 1.2265 | 1.1029 | 7 | | 1.2524 | 1.0225 | 8 | | 1.1722 | 1.1167 | 9 | | 1.1396 | 0.9434 | 10 | | 1.1002 | 1.0683 | 11 | | 1.0693 | 1.0637 | 12 | | 1.0896 | 0.9698 | 13 | | 1.0590 | 0.9038 | 14 | | 1.0357 | 0.9302 | 15 | | 1.0557 | 0.8600 | 16 | | 1.0036 | 0.7892 | 17 | | 1.0283 | 0.9425 | 18 | | 0.9883 | 0.7521 | 19 | | 0.9797 | 0.7950 | 20 | | 0.9511 | 0.8072 | 21 | | 0.9023 | 0.8780 | 22 | | 0.9074 | 0.8745 | 23 | | 0.9324 | 0.7436 | 24 | | 0.8921 | 0.9032 | 25 | | 0.9098 | 0.8011 | 26 | | 0.8843 | 0.8527 | 27 | | 0.8756 | 0.7803 | 28 | | 0.8759 | 0.8922 | 29 | | 0.8472 | 0.8286 | 30 | | 0.8156 | 0.7801 | 31 | | 0.8401 | 0.7904 | 32 | | 0.8400 | 0.9007 | 33 | | 0.8368 | 0.6959 | 34 | | 0.8429 | 0.6646 | 35 | | 0.8496 | 0.7386 | 36 | | 0.8168 | 0.7544 | 37 | | 0.7927 | 0.8467 | 38 | | 0.8025 | 0.7375 | 39 | | 0.7893 | 0.7091 | 40 | | 0.7762 | 0.6758 | 41 | | 0.7516 | 0.8641 | 42 | | 0.7645 | 0.7587 | 43 | | 0.7790 | 0.7386 | 44 | | 0.7393 | 0.7801 | 45 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1