--- language: en thumbnail: license: mit tags: - question-answering - - datasets: - squad metrics: - squad widget: - text: "Where is the Eiffel Tower located?" context: "The Eiffel Tower is a wrought-iron lattice tower on the Champ de Mars in Paris, France. It is named after the engineer Gustave Eiffel, whose company designed and built the tower." - text: "Who is Frederic Chopin?" context: "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano." --- ## BERT-base uncased model fine-tuned on SQuAD v1 This model was created using the [nn_pruning](https://github.com/huggingface/nn_pruning) python library: the **linear layers contains 8.0%** of the original weights. The model contains **28.0%** of the original weights **overall** (the embeddings account for a significant part of the model, and they are not pruned by this method). With a simple resizing of the linear matrices it ran **1.16x as fast as bert-base-uncased** on the evaluation. This is possible because the pruning method lead to structured matrices: to visualize them, hover below on the plot to see the non-zero/zero parts of each matrix.
In terms of accuracy, its **F1 is 88.11**, compared with 88.5 for bert-base-uncased, a **F1 drop of 0.39**. ## Fine-Pruning details This model was fine-tuned from the HuggingFace [model](https://huggingface.co/bert-base-uncased) checkpoint on [SQuAD1.1](https://rajpurkar.github.io/SQuAD-explorer), and distilled from the model [bert-large-uncased-whole-word-masking-finetuned-squad](https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad) This model is case-insensitive: it does not make a difference between english and English. A side-effect of the block pruning is that some of the attention heads are completely removed: 22 heads were removed on a total of 144 (15.3%). Here is a detailed view on how the remaining heads are distributed in the network after pruning. ## Details of the SQuAD1.1 dataset | Dataset | Split | # samples | | -------- | ----- | --------- | | SQuAD1.1 | train | 90.6K | | SQuAD1.1 | eval | 11.1k | ### Fine-tuning - Python: `3.8.5` - Machine specs: ```CPU: Intel(R) Core(TM) i7-6700K CPU Memory: 64 GiB GPUs: 1 GeForce GTX 3090, with 24GiB memory GPU driver: 455.23.05, CUDA: 11.1 ``` ### Results **Pytorch model file size**: `398MB` (original BERT: `420MB`) | Metric | # Value | # Original ([Table 2](https://www.aclweb.org/anthology/N19-1423.pdf))| Variation | | ------ | --------- | --------- | --------- | | **EM** | **80.94** | **80.8** | **+0.14**| | **F1** | **88.11** | **88.5** | **-0.39**| ## Example Usage Install nn_pruning: it contains the optimization script, which just pack the linear layers into smaller ones by removing empty rows/columns. `pip install nn_pruning` Then you can use the `transformers library` almost as usual: you just have to call `optimize_model` when the pipeline has loaded. ```python from transformers import pipeline from nn_pruning.inference_model_patcher import optimize_model qa_pipeline = pipeline( "question-answering", model="madlag/bert-base-uncased-squadv1-x1.16-f88.1-d8-unstruct-v1", tokenizer="madlag/bert-base-uncased-squadv1-x1.16-f88.1-d8-unstruct-v1" ) print("bert-base-uncased parameters: 152.0M") print(f"Parameters count (includes only head pruning, not feed forward pruning)={int(qa_pipeline.model.num_parameters() / 1E6)}M") qa_pipeline.model = optimize_model(qa_pipeline.model, "dense") print(f"Parameters count after complete optimization={int(qa_pipeline.model.num_parameters() / 1E6)}M") predictions = qa_pipeline({ 'context': "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano.", 'question': "Who is Frederic Chopin?", }) print("Predictions", predictions) ```