--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer datasets: - Salesforce/dialogstudio model-index: - name: tweet-summarization-llama-2-finetuned results: [] --- # tweet-summarization-llama-2-finetuned This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the Salesforce/dialogstudio dataset. It achieves the following results on the evaluation set: - Loss: 1.8672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8996 | 1.0 | 55 | 1.9491 | | 1.8415 | 2.0 | 110 | 1.8857 | | 1.7693 | 3.0 | 165 | 1.8749 | | 1.7136 | 4.0 | 220 | 1.8678 | | 1.7533 | 5.0 | 275 | 1.8663 | | 1.6182 | 6.0 | 330 | 1.8665 | | 1.69 | 7.0 | 385 | 1.8672 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3