--- tags: - autotrain - tabular - regression - tabular-regression datasets: - rea-ridge/autotrain-data --- # Model Trained Using AutoTrain - Problem type: Tabular regression ## Validation Metrics - r2: 0.19049946745813506 - mse: 2090173568.9542394 - mae: 38517.69777526885 - rmse: 45718.41608098688 - rmsle: 0.22010094141328534 - loss: 45718.41608098688 ## Best Params - alpha: 0.0007335286293009105 - fit_intercept: True - max_iter: 9736 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] predictions = model.predict(data) # or model.predict_proba(data) # predictions can be converted to original labels using label_encoders.pkl ```