--- tags: - autotrain - tabular - regression - tabular-regression datasets: - rea-xgboost/autotrain-data --- # Model Trained Using AutoTrain - Problem type: Tabular regression ## Validation Metrics - r2: 0.3033866286277771 - mse: 1798692953.5327067 - mae: 31881.1203125 - rmse: 42411.00038354091 - rmsle: 0.20291934835125106 - loss: 42411.00038354091 ## Best Params - learning_rate: 0.10040353638173113 - reg_lambda: 0.006827780870976135 - reg_alpha: 0.006625264866744126 - subsample: 0.25905346245387173 - colsample_bytree: 0.2072843639904269 - max_depth: 4 - early_stopping_rounds: 122 - n_estimators: 7000 - eval_metric: rmse ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] predictions = model.predict(data) # or model.predict_proba(data) # predictions can be converted to original labels using label_encoders.pkl ```