--- language: - ms library_name: transformers --- Safe for Work Classifier Model for Malaysian Data Current version supports Malay. We are working towards supporting malay, english and indo. Base Model finetuned from https://huggingface.co/mesolitica/malaysian-mistral-191M-MLM-512 with Malaysian NSFW data. Data Source: https://huggingface.co/datasets/malaysia-ai/Malaysian-NSFW Github Repo: https://github.com/malaysia-ai/sfw-classifier Project Board: https://github.com/orgs/malaysia-ai/projects/6 ![Image in a markdown cell](https://github.com/mesolitica/malaysian-llmops/raw/main/e2e.png) Current Labels Available: - religion insult - sexist - racist - psychiatric or mental illness - harassment - safe for work - porn - self-harm - violence ### How to use ```python from classifier import MistralForSequenceClassification from transformers import AutoTokenizer from transformers import pipeline model = MistralForSequenceClassification.from_pretrained('malaysia-ai/malaysian-sfw-classifier') tokenizer = AutoTokenizer.from_pretrained('malaysia-ai/malaysian-sfw-classifier') pipe = pipeline("text-classification", tokenizer = tokenizer, model=model) input_str = ["INSERT_INPUT_0", "INSERT_INPUT_1"] print(pipe(input_str)) ``` ``` precision recall f1-score support racist 0.87619 0.91390 0.89465 1719 religion insult 0.88533 0.85813 0.87152 3320 psychiatric or mental illness 0.94224 0.87020 0.90479 5624 sexist 0.77146 0.82234 0.79609 1486 harassment 0.81935 0.87460 0.84608 949 porn 0.95047 0.97546 0.96280 1141 safe for work 0.83471 0.90741 0.86954 3456 self-harm 0.81796 0.95906 0.88291 342 violence 0.84317 0.78786 0.81457 1433 accuracy 0.87684 19470 macro avg 0.86010 0.88544 0.87144 19470 weighted avg 0.87960 0.87684 0.87718 19470 ```