--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: mallikrao2/qa-finetuned-swag results: [] --- # mallikrao2/qa-finetuned-swag This model is a fine-tuned version of [mallikrao2/sQuad_bertmodel1_](https://huggingface.co/mallikrao2/sQuad_bertmodel1_) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0020 - Train Accuracy: 0.9994 - Validation Loss: 1.9750 - Validation Accuracy: 0.7508 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 66860, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.8405 | 0.6630 | 0.6156 | 0.7596 | 0 | | 0.4697 | 0.8233 | 0.6102 | 0.7643 | 1 | | 0.2479 | 0.9087 | 0.7102 | 0.7573 | 2 | | 0.1571 | 0.9439 | 0.8434 | 0.7482 | 3 | | 0.1139 | 0.9599 | 1.0923 | 0.7453 | 4 | | 0.0881 | 0.9698 | 1.0614 | 0.7421 | 5 | | 0.0705 | 0.9758 | 1.1311 | 0.7412 | 6 | | 0.0577 | 0.9802 | 1.1761 | 0.7387 | 7 | | 0.0453 | 0.9845 | 1.3310 | 0.7446 | 8 | | 0.0379 | 0.9869 | 1.3076 | 0.7361 | 9 | | 0.0301 | 0.9898 | 1.3147 | 0.7434 | 10 | | 0.0228 | 0.9923 | 1.6641 | 0.7388 | 11 | | 0.0195 | 0.9932 | 1.6168 | 0.7397 | 12 | | 0.0165 | 0.9948 | 1.6042 | 0.7458 | 13 | | 0.0118 | 0.9960 | 1.6922 | 0.7426 | 14 | | 0.0098 | 0.9970 | 1.7052 | 0.7449 | 15 | | 0.0059 | 0.9982 | 1.8137 | 0.7453 | 16 | | 0.0040 | 0.9986 | 1.9369 | 0.7504 | 17 | | 0.0032 | 0.9991 | 1.9089 | 0.7498 | 18 | | 0.0020 | 0.9994 | 1.9750 | 0.7508 | 19 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.8.0 - Datasets 2.12.0 - Tokenizers 0.13.3