--- license: other base_model: "black-forest-labs/FLUX.1-schnell" tags: - flux - flux-diffusers - text-to-image - diffusers - simpletuner - not-for-all-audiences - lora - template:sd-lora - standard inference: true widget: - text: 'unconditional (blank prompt)' parameters: negative_prompt: '''' output: url: ./assets/image_0_0.png - text: 'A happy pizza.' parameters: negative_prompt: '''' output: url: ./assets/image_1_0.png --- # flux-lora-training This is a standard PEFT LoRA derived from [black-forest-labs/FLUX.1-schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell). The main validation prompt used during training was: ``` A happy pizza. ``` ## Validation settings - CFG: `0.0` - CFG Rescale: `0.0` - Steps: `15` - Sampler: `FlowMatchEulerDiscreteScheduler` - Seed: `42` - Resolution: `1024x1024` - Skip-layer guidance: Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 1 - Training steps: 25 - Learning rate: 0.0001 - Learning rate schedule: constant_with_warmup - Warmup steps: 100 - Max grad norm: 1.0 - Effective batch size: 16 - Micro-batch size: 2 - Gradient accumulation steps: 8 - Number of GPUs: 1 - Gradient checkpointing: True - Prediction type: flow-matching (extra parameters=['flux_fast_schedule', 'flux_schedule_auto_shift', 'shift=0.0', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible', 'flux_lora_target=all+ffs']) - Optimizer: adamw_bf16 - Trainable parameter precision: Pure BF16 - Caption dropout probability: 0.0% - LoRA Rank: 16 - LoRA Alpha: None - LoRA Dropout: 0.1 - LoRA initialisation style: default ## Datasets ### default_dataset - Repeats: 0 - Total number of images: 90 - Total number of aspect buckets: 1 - Resolution: 1.048576 megapixels - Cropped: True - Crop style: center - Crop aspect: square - Used for regularisation data: No ### default_dataset_512 - Repeats: 0 - Total number of images: 90 - Total number of aspect buckets: 1 - Resolution: 0.262144 megapixels - Cropped: True - Crop style: center - Crop aspect: square - Used for regularisation data: No ### default_dataset_768 - Repeats: 0 - Total number of images: 90 - Total number of aspect buckets: 1 - Resolution: 0.589824 megapixels - Cropped: True - Crop style: center - Crop aspect: square - Used for regularisation data: No ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = 'black-forest-labs/FLUX.1-schnell' adapter_id = 'manbeast3b/flux-lora-training' pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16 pipeline.load_lora_weights(adapter_id) prompt = "A happy pizza." ## Optional: quantise the model to save on vram. ## Note: The model was quantised during training, and so it is recommended to do the same during inference time. from optimum.quanto import quantize, freeze, qint8 quantize(pipeline.transformer, weights=qint8) freeze(pipeline.transformer) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level image = pipeline( prompt=prompt, num_inference_steps=15, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42), width=1024, height=1024, guidance_scale=0.0, ).images[0] image.save("output.png", format="PNG") ```