--- license: gemma base_model: google/gemma-7b tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - masakhane/african-translated-alpaca model-index: - name: zephyr-7b-gemma-sft-african-alpaca results: [] language: - af - am - ar - en - ee --- # zephyr-7b-gemma-sft-alpaca This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the masakhane/african-translated-alpaca dataset. It achieves the following results on the evaluation set: - Loss: 0.2737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.8671 | 1.0 | 5882 | 0.7445 | | 0.5235 | 2.0 | 11764 | 0.3905 | | 0.3309 | 3.0 | 17646 | 0.2737 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2 ### Usage ```python # Install transformers from source - only needed for versions <= v4.34 # pip install git+https://github.com/huggingface/transformers.git # pip install accelerate import torch from transformers import pipeline pipe = pipeline("text-generation", model="masakhane/zephyr-7b-gemma-sft-african-alpaca", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "You are a friendly chatbot who answewrs question in given language", }, {"role": "user", "content": "what is the 3 biggest countrys in Africa?"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) # <|system|> # You are a friendly chatbot who always responds in the style of a pirate # <|user|> # what is the 3 biggest countrys in Africa? # <|assistant|> # The 3 biggest countries in Africa are Nigeria, Ethiopia and South Africa. ``` ### Quantized Versions through bitsandbytes ``` python import torch from transformers import pipeline from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained("masakhane/zephyr-7b-gemma-sft-african-alpaca") model = AutoModelForCausalLM.from_pretrained("masakhane/zephyr-7b-gemma-sft-african-alpaca", quantization_config=quantization_config) pipe = pipeline("text-generation", model=model,tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto") messages = [ { "role": "system", "content": "You are a friendly chatbot who answewrs question in given language", }, {"role": "user", "content": "list languages in Africa?"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```