--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-medium-sds200 results: [] --- # whisper-medium-sds200 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3857 - Wer: 23.6639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.4466 | 0.4327 | 1000 | 0.4548 | 27.8436 | | 0.3417 | 0.8654 | 2000 | 0.4154 | 26.0740 | | 0.2122 | 1.2981 | 3000 | 0.3984 | 25.3984 | | 0.1734 | 1.7309 | 4000 | 0.3851 | 24.1424 | | 0.1015 | 2.1636 | 5000 | 0.3857 | 23.6639 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1