--- library_name: transformers base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: biobert-v1.1-finetuned-medmcqa-2024-11-25-T16-53-56 results: [] --- # biobert-v1.1-finetuned-medmcqa-2024-11-25-T16-53-56 This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7742 - Accuracy: 0.7381 - F1: 0.7360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000159 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 1.3837 | 0.9739 | 14 | 0.9841 | 0.6667 | 0.6554 | | 1.0861 | 1.9478 | 28 | 0.9140 | 0.6190 | 0.6246 | | 0.7803 | 2.9913 | 43 | 0.7742 | 0.7381 | 0.7360 | | 0.5603 | 3.9652 | 57 | 0.8236 | 0.7143 | 0.7138 | | 0.2753 | 4.9391 | 71 | 0.8765 | 0.7143 | 0.7110 | | 0.1985 | 5.9826 | 86 | 0.9808 | 0.7381 | 0.7399 | | 0.1119 | 6.9565 | 100 | 0.8757 | 0.7381 | 0.7312 | | 0.0814 | 8.0 | 115 | 0.8388 | 0.7381 | 0.7519 | | 0.0705 | 8.9739 | 129 | 1.0431 | 0.7381 | 0.7519 | | 0.0658 | 9.7391 | 140 | 0.9075 | 0.7143 | 0.7220 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3