--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2 - yam-peleg/Experiment26-7B base_model: - eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2 - yam-peleg/Experiment26-7B model-index: - name: yam-jom-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.38 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/yam-jom-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.15 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/yam-jom-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.51 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/yam-jom-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 78.04 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/yam-jom-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.93 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/yam-jom-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.6 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/yam-jom-7B name: Open LLM Leaderboard --- # yam-jom-7B yam-jom-7B is a task arithmetic merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2](https://huggingface.co/eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2) * [yam-peleg/Experiment26-7B](https://huggingface.co/yam-peleg/Experiment26-7B) ## 🧩 Configuration ```yaml models: - model: eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2 parameters: weight: 0.35 - model: yam-peleg/Experiment26-7B parameters: weight: 0.65 base_model: yam-peleg/Experiment26-7B merge_method: task_arithmetic dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mayacinka/yam-jom-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mayacinka__yam-jom-7B) | Metric |Value| |---------------------------------|----:| |Avg. |76.60| |AI2 Reasoning Challenge (25-Shot)|73.38| |HellaSwag (10-Shot) |89.15| |MMLU (5-Shot) |64.51| |TruthfulQA (0-shot) |78.04| |Winogrande (5-shot) |84.93| |GSM8k (5-shot) |69.60|