--- tags: - merge - mergekit - lazymergekit - mlabonne/OmniTruthyBeagle-7B-v0 - mayflowergmbh/Wiedervereinigung-7b-dpo-laser - cognitivecomputations/openchat-3.5-0106-laser base_model: - mlabonne/OmniTruthyBeagle-7B-v0 - mayflowergmbh/Wiedervereinigung-7b-dpo-laser - cognitivecomputations/openchat-3.5-0106-laser --- # Wiederchat-7b-dpo-laser Wiederchat-7b-dpo is a laser-qlorad dpo-aligned merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/OmniTruthyBeagle-7B-v0](https://huggingface.co/mlabonne/OmniTruthyBeagle-7B-v0) * [mayflowergmbh/Wiedervereinigung-7b-dpo-laser](https://huggingface.co/mayflowergmbh/Wiedervereinigung-7b-dpo-laser) * [cognitivecomputations/openchat-3.5-0106-laser](https://huggingface.co/cognitivecomputations/openchat-3.5-0106-laser) ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 # no parameters necessary for base model - model: mlabonne/OmniTruthyBeagle-7B-v0 parameters: density: 0.60 weight: 0.30 - model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser parameters: density: 0.65 weight: 0.40 - model: cognitivecomputations/openchat-3.5-0106-laser parameters: density: 0.6 weight: 0.3 merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: bfloat16 random_seed: 0 ``` ## 📈 Mt-Bench-De ```json { "first_turn": 7.8875, "second_turn": 7.31875, "categories": { "writing": 8.65, "roleplay": 8.225, "reasoning": 6.5, "math": 4.55, "coding": 6.1, "extraction": 8.25, "stem": 9.2, "humanities": 9.35 }, "average": 7.603125 } ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "johannhartmann/Wiederchat-7b-dpo-laser" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```