--- license: other license_name: yi-license license_link: LICENSE language: - en - ko pipeline_tag: text-generation inference: false base_model: beomi/Yi-Ko-34B tags: - pytorch - Yi-Ko - 01-ai - Yi library_name: transformers --- # Yi Ko 34B Instruct ## Training Process 1. Further trained with Korean corpus. 2. SFT 3. DPO [(Dataset URL)](https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-7k-binarized) ## Model Info | Context Length | Parameter | Prompt Template | KMMLU(5-shot) | | --- | --- | --- | --- | | 4k(4096) | 34B | ChatML | 49.03 | ## Acknowledgement The training is supported by [Sionic AI](https://sionic.ai). # Original Model Card by [beomi](https://huggingface.co/beomi) Yi-Ko series models serve as advanced iterations of 01-ai/Yi models, benefiting from an expanded vocabulary and the inclusion of Korean/English corpus in its further pretraining. Just like its predecessor, Yi-Ko series models operate within the broad range of generative text models that stretch from 6 billion to 34 billion parameters. This repository focuses on the **34B** pretrained version, which is tailored to fit the Hugging Face Transformers format. For access to the other models, feel free to consult the index provided below. ## Model Details **Model Developers** Junbum Lee (Beomi) **Variations** Yi-Ko-34B will come in a range of parameter sizes — 6B and 34B — with Ko(Korean+English). **Input** Models input text only. **Output** Models generate text only. **Model Architecture** Yi-Ko series models are an auto-regressive language model that uses an optimized transformer architecture based on Llama-2*. *Yi model architecture is based on Llama2, so it can be loaded via `LlamaForCausalLM` class on HF. |Model Name|Training Data|Params|Context Length|GQA|Trained Tokens|LR|Train tokens (per batch)| |---|---|---|---|---|---|---|---| |Yi-Ko-34B|*A mix of Korean + English online data*|34B|4k|O|40B+|5e-5|4M| **Vocab Expansion** | Model Name | Vocabulary Size | Description | | --- | --- | --- | | Original Yi-Series | 64000 | Sentencepiece BPE | | **Expanded Yi-Ko Series** | 78464 | Sentencepiece BPE. Added Korean vocab and merges | **Tokenizing "안녕하세요, 오늘은 날씨가 좋네요.ㅎㅎ"** | Model | # of tokens | Tokens | | --- | --- | --- | | Original Yi-Series | 47 | `['<0xEC>', '<0x95>', '<0x88>', '<0xEB>', '<0x85>', '<0x95>', '하', '<0xEC>', '<0x84>', '<0xB8>', '<0xEC>', '<0x9A>', '<0x94>', ',', '▁', '<0xEC>', '<0x98>', '<0xA4>', '<0xEB>', '<0x8A>', '<0x98>', '은', '▁', '<0xEB>', '<0x82>', '<0xA0>', '<0xEC>', '<0x94>', '<0xA8>', '가', '▁', '<0xEC>', '<0xA2>', '<0x8B>', '<0xEB>', '<0x84>', '<0xA4>', '<0xEC>', '<0x9A>', '<0x94>', '.', '<0xE3>', '<0x85>', '<0x8E>', '<0xE3>', '<0x85>', '<0x8E>']` | | **Expanded Yi-Ko Series** | 10 | `['▁안녕', '하세요', ',', '▁오늘은', '▁날', '씨가', '▁좋네요', '.', 'ㅎ', 'ㅎ']` | |*Equal Korean vocab with Llama-2-Ko Series|| **Tokenizing "Llama 2: Open Foundation and Fine-Tuned Chat Models"** | Model | # of tokens | Tokens | | --- | --- | --- | | Original Yi-Series | 21 | `['The', '▁Y', 'i', '▁series', '▁models', '▁are', '▁large', '▁language', '▁models', '▁trained', '▁from', '▁scratch', '▁by', '▁developers', '▁at', '▁', '0', '1', '.', 'AI', '.']` | | **Expanded Yi-Ko Series** | 21 | `['▁The', '▁Y', 'i', '▁series', '▁models', '▁are', '▁large', '▁language', '▁models', '▁trained', '▁from', '▁scratch', '▁by', '▁developers', '▁at', '▁', '0', '1', '.', 'AI', '.']` | |*Equal Korean vocab with Llama-2-Ko Series| | *Since **Expanded Yi-Ko Series** prepends `_` at the beginning of the text(to ensure same tokenization for Korean sentences), it shows negilible difference for the first token on English tokenization. | # **Model Benchmark** ## LM Eval Harness - Korean Benchmarks | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |----------------|------:|------|-----:|--------|-----:|---|------| |**kmmlu_direct**|N/A |none | 5|exact_match|**0.5027**|± |0.1019| |kobest_boolq | 1|none | 5|acc |0.9202|± |0.0072| | | |none | 5|f1 |0.9202|± |N/A | |kobest_copa | 1|none | 5|acc |0.8480|± |0.0114| | | |none | 5|f1 |0.8479|± |N/A | |kobest_hellaswag| 1|none | 5|acc |0.5320|± |0.0223| | | |none | 5|f1 |0.5281|± |N/A | | | |none | 5|acc_norm|0.6340|± |0.0216| |kobest_sentineg | 1|none | 5|acc |0.9874|± |0.0056| | | |none | 5|f1 |0.9874|± |N/A | |haerae |N/A |none | 5|acc |0.7965|± |0.0116| | | |none | 5|acc_norm|0.7965|± |0.0116| | - haerae_general_knowledge | 1|none | 5|acc |0.5114|± |0.0378| | | |none | 5|acc_norm|0.5114|± |0.0378| | - haerae_history | 1|none | 5|acc |0.8511|± |0.0260| | | |none | 5|acc_norm|0.8511|± |0.0260| | - haerae_loan_word | 1|none | 5|acc |0.8402|± |0.0283| | | |none | 5|acc_norm|0.8402|± |0.0283| | - haerae_rare_word | 1|none | 5|acc |0.8642|± |0.0170| | | |none | 5|acc_norm|0.8642|± |0.0170| | - haerae_standard_nomenclature| 1|none | 5|acc |0.8301|± |0.0305| | | |none | 5|acc_norm|0.8301|± |0.0305| ## LICENSE Follows Yi License ## Citation ## Acknowledgement The training is supported by [TPU Research Cloud](https://sites.research.google/trc/) program.