--- language: ja tags: - t5 - text2text-generation - seq2seq license: apache-2.0 datasets: - mc4 - wiki40b --- # t5-base-japanese-web (with Byte-fallback, 32K) ## Description [megagonlabs/t5-base-japanese-web](https://huggingface.co/megagonlabs/t5-base-japanese-web) is a T5 (Text-to-Text Transfer Transformer) model pre-trained on Japanese web texts. Training codes are [available on GitHub](https://github.com/megagonlabs/t5-japanese). The vocabulary size of this model is 32K. [8K version is also available](https://huggingface.co/megagonlabs/t5-base-japanese-web-8k). ### Corpora We used following corpora for pre-training. - Japanese in [mC4/3.0.1](https://huggingface.co/datasets/mc4) (We used [Tensorflow native format](https://github.com/allenai/allennlp/discussions/5056)) - 87,425,304 pages - 782 GB in TFRecord format - [Japanese](https://www.tensorflow.org/datasets/catalog/wiki40b#wiki40bja) in [wiki40b/1.3.0](https://www.tensorflow.org/datasets/catalog/wiki40b) - 828,236 articles (2,073,584 examples) - 2 GB in TFRecord format ### Tokenizer We used Japanese Wikipedia to train [SentencePiece](https://github.com/google/sentencepiece). - Vocabulary size: 32,000 - [Byte-fallback](https://github.com/google/sentencepiece/releases/tag/v0.1.9): Enabled ### Parameters - T5 model: [models/t5.1.1.base.gin](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/t5/models/gin/models/t5.1.1.base.gin) - Training steps: 1,000,000 It took about 126 hours with TPU v3-8 ## Related models - [日本語T5事前学習済みモデル (sonoisa/t5-base-japanese)](https://huggingface.co/sonoisa/t5-base-japanese) - [日本語T5事前学習済みモデル (sonoisa/t5-base-japanese-mC4-Wikipedia)](https://huggingface.co/sonoisa/t5-base-japanese-mC4-Wikipedia) ## License Apache License 2.0 ## Citations - mC4 Contains information from `mC4` which is made available under the [ODC Attribution License](https://opendatacommons.org/licenses/by/1-0/). ```bibtex @article{2019t5, author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, journal = {arXiv e-prints}, year = {2019}, archivePrefix = {arXiv}, eprint = {1910.10683}, } ``` - wiki40b ```bibtex @inproceedings{49029, title = {Wiki-40B: Multilingual Language Model Dataset}, author = {Mandy Guo and Zihang Dai and Denny Vrandecic and Rami Al-Rfou}, year = {2020}, booktitle = {LREC 2020} } ```