--- language: - ja thumbnail: "https://raw.githubusercontent.com/megagonlabs/ginza/static/docs/images/GiNZA_logo_4c_s.png" tags: - PyTorch - Transformers - spaCy - ELECTRA - GiNZA - mC4 - UD_Japanese-BCCWJ - GSK2014-A - ja - MIT license: "mit" datasets: - mC4 - UD_Japanese_BCCWJ r2.8 - GSK2014-A(2019) metrics: - UAS - LAS - UPOS --- # transformers-ud-japanese-electra-ginza-510 (sudachitra-wordpiece, mC4 Japanese) This is an [ELECTRA](https://github.com/google-research/electra) model pretrained on approximately 200M Japanese sentences extracted from the [mC4](https://huggingface.co/datasets/mc4) and finetuned by [spaCy v3](https://spacy.io/usage/v3) on [UD\_Japanese\_BCCWJ r2.8](https://universaldependencies.org/treebanks/ja_bccwj/index.html). The base pretrain model is [megagonlabs/transformers-ud-japanese-electra-base-discrimininator](https://huggingface.co/megagonlabs/transformers-ud-japanese-electra-base-discriminator). The entire spaCy v3 model is distributed as a python package named [`ja_ginza_electra`](https://pypi.org/project/ja-ginza-electra/) from PyPI along with [`GiNZA v5`](https://github.com/megagonlabs/ginza) which provides some custom pipeline components to recognize the Japanese bunsetu-phrase structures. Try running it as below: ```console $ pip install ginza ja_ginza_electra $ ginza ``` ## Licenses The models are distributed under the terms of the [MIT License](https://opensource.org/licenses/mit-license.php). ## Acknowledgments This model is permitted to be published under the `MIT License` under a joint research agreement between NINJAL (National Institute for Japanese Language and Linguistics) and Megagon Labs Tokyo. ## Citations - [mC4](https://huggingface.co/datasets/mc4) Contains information from `mC4` which is made available under the [ODC Attribution License](https://opendatacommons.org/licenses/by/1-0/). ``` @article{2019t5, author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, journal = {arXiv e-prints}, year = {2019}, archivePrefix = {arXiv}, eprint = {1910.10683}, } ``` - [UD\_Japanese\_BCCWJ r2.8](https://universaldependencies.org/treebanks/ja_bccwj/index.html) ``` Asahara, M., Kanayama, H., Tanaka, T., Miyao, Y., Uematsu, S., Mori, S., Matsumoto, Y., Omura, M., & Murawaki, Y. (2018). Universal Dependencies Version 2 for Japanese. In LREC-2018. ``` - [GSK2014-A(2019)](https://www.gsk.or.jp/catalog/gsk2014-a/)