---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- text-classification
---
# Model description
This is a multinomial naive Bayes model trained on 20 new groups dataset. Count vectorizer and TFIDF vectorizer are used on top of the model.
## Intended uses & limitations
This model is not ready to be used in production.
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
Click to expand
| Hyperparameter | Value |
|---------------------|----------------------------------------------------------------------------------------|
| memory | |
| steps | [('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', MultinomialNB())] |
| verbose | False |
| vect | CountVectorizer() |
| tfidf | TfidfTransformer() |
| clf | MultinomialNB() |
| vect__analyzer | word |
| vect__binary | False |
| vect__decode_error | strict |
| vect__dtype |
Pipeline(steps=[('vect', CountVectorizer()), ('tfidf', TfidfTransformer()),('clf', MultinomialNB())])Please rerun this cell to show the HTML repr or trust the notebook.
Pipeline(steps=[('vect', CountVectorizer()), ('tfidf', TfidfTransformer()),('clf', MultinomialNB())])
CountVectorizer()
TfidfTransformer()
MultinomialNB()