--- language: - en license: apache-2.0 tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:6300 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: BAAI/bge-base-en-v1.5 widget: - source_sentence: Consolidated Regulatory Capital - The capital requirements calculated under the FRB’s Capital Framework include the capital conservation buffer requirements, which are comprised of a 2.5% buffer (under the Advanced Capital Rules). sentences: - What was the effective income tax rate for the year ended December 31, 2023? - What is the function of capital conservation buffer requirements in the FRB's Capital Framework for banks like Group Inc. in 2023? - What incentive does the Hawaiian Electric’s Battery Bonus grid services program offer? - source_sentence: Balance at beginning of year 2021 was $30 million and, after charge-offs, recoveries, and provisions for credit losses, the balance at end of year was $18 million. sentences: - Between what dates did CS&Co allegedly violate their duty to seek best execution as per the plaintiffs' allegations in the lawsuit involving UBS Securities LLC? - What were the balance at the beginning and the end of the year for credit loss balances in 2021? - How does the company handle leasehold improvements in terms of depreciation? - source_sentence: The Compute reporting unit has an excess of fair value over carrying value of 5% as of the annual test date. sentences: - What percent excess of fair value over carrying value did the Compute reporting unit have as of the annual test date in 2023? - What were the effective income tax rates for fiscal years 2023, 2022, and 2021, and how did specific tax events affect these rates? - When does the latest expiring European composition of matter patent (Supplementary Protection Certificate) for STELARA expire? - source_sentence: The net revenue decrease during 2023 in the Entertainment segment was driven by lower entertainment productions and deliveries, reflecting the impact of the several months-long strikes during 2023 by the Writers Guild of America and the American actors' union, SAG-AFTRA. sentences: - What was the operating income for Google Cloud in 2023? - How much did the company contribute to its pension and OPEB plans in 2023? - What was the impact of the strikes by the Writers Guild of America and SAG-AFTRA on the Entertainment segment's net revenues in 2023? - source_sentence: As a REIT, future repatriation of incremental undistributed earnings of the company's foreign subsidiaries will not be subject to federal or state income tax, with the exception of foreign withholding taxes. sentences: - What tax implications apply to the future repatriation of incremental undistributed earnings by a REIT from its foreign subsidiaries? - What was the accrued liability for product recall related matters as of the end of the fiscal year on June 30, 2023? - What was the total amount of future interest payments associated with the Notes as of September 30, 2023? pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: BGE base Financial Matryoshka results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.7128571428571429 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8428571428571429 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.88 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.92 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7128571428571429 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.28095238095238095 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.176 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09199999999999998 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7128571428571429 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8428571428571429 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.88 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.92 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8194470096208256 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7869285714285713 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7892168694112985 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.7214285714285714 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8471428571428572 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8757142857142857 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9185714285714286 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7214285714285714 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2823809523809524 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.17514285714285713 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09185714285714286 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7214285714285714 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8471428571428572 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8757142857142857 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9185714285714286 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8222551376922121 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7912256235827663 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7935743687249276 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.7042857142857143 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8342857142857143 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8771428571428571 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9157142857142857 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7042857142857143 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.27809523809523806 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1754285714285714 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09157142857142857 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7042857142857143 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8342857142857143 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8771428571428571 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9157142857142857 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.813165438848782 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7800498866213152 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7822651539071127 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.6971428571428572 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8142857142857143 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8557142857142858 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9028571428571428 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6971428571428572 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2714285714285714 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.17114285714285712 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09028571428571427 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6971428571428572 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8142857142857143 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8557142857142858 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9028571428571428 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7996582219917312 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7667329931972787 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7700915959452638 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.6742857142857143 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7942857142857143 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8257142857142857 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8742857142857143 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6742857142857143 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.26476190476190475 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16514285714285712 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08742857142857141 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6742857142857143 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7942857142857143 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8257142857142857 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8742857142857143 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7742733360934079 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7424053287981859 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7463231326238146 name: Cosine Map@100 --- # BGE base Financial Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("mezeidragos-lateral/bge-base-financial-matryoshka") # Run inference sentences = [ "As a REIT, future repatriation of incremental undistributed earnings of the company's foreign subsidiaries will not be subject to federal or state income tax, with the exception of foreign withholding taxes.", 'What tax implications apply to the future repatriation of incremental undistributed earnings by a REIT from its foreign subsidiaries?', 'What was the accrued liability for product recall related matters as of the end of the fiscal year on June 30, 2023?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 | |:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.7129 | 0.7214 | 0.7043 | 0.6971 | 0.6743 | | cosine_accuracy@3 | 0.8429 | 0.8471 | 0.8343 | 0.8143 | 0.7943 | | cosine_accuracy@5 | 0.88 | 0.8757 | 0.8771 | 0.8557 | 0.8257 | | cosine_accuracy@10 | 0.92 | 0.9186 | 0.9157 | 0.9029 | 0.8743 | | cosine_precision@1 | 0.7129 | 0.7214 | 0.7043 | 0.6971 | 0.6743 | | cosine_precision@3 | 0.281 | 0.2824 | 0.2781 | 0.2714 | 0.2648 | | cosine_precision@5 | 0.176 | 0.1751 | 0.1754 | 0.1711 | 0.1651 | | cosine_precision@10 | 0.092 | 0.0919 | 0.0916 | 0.0903 | 0.0874 | | cosine_recall@1 | 0.7129 | 0.7214 | 0.7043 | 0.6971 | 0.6743 | | cosine_recall@3 | 0.8429 | 0.8471 | 0.8343 | 0.8143 | 0.7943 | | cosine_recall@5 | 0.88 | 0.8757 | 0.8771 | 0.8557 | 0.8257 | | cosine_recall@10 | 0.92 | 0.9186 | 0.9157 | 0.9029 | 0.8743 | | **cosine_ndcg@10** | **0.8194** | **0.8223** | **0.8132** | **0.7997** | **0.7743** | | cosine_mrr@10 | 0.7869 | 0.7912 | 0.78 | 0.7667 | 0.7424 | | cosine_map@100 | 0.7892 | 0.7936 | 0.7823 | 0.7701 | 0.7463 | ## Training Details ### Training Dataset #### json * Dataset: json * Size: 6,300 training samples * Columns: positive and anchor * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | positive | anchor | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------| | We provide transaction processing services (primarily authorization, clearing and settlement) to our financial institution and merchant clients through VisaNet, our proprietary advanced transaction processing network. | What are the primary transaction processing services provided by Visa through VisaNet? | | Information about legal proceedings is included in Item 8 of the Annual Report on Form 10-K, as referenced in Item 3. | What item in the Annual Report on Form 10-K provides information about legal proceedings? | | Investing activities used cash of $3.0 billion in 2022. | What was the net cash used by investing activities in 2022? | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `load_best_model_at_end`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |:---------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.8122 | 10 | 1.5626 | - | - | - | - | - | | 1.0 | 13 | - | 0.8071 | 0.8040 | 0.7933 | 0.7781 | 0.7478 | | 1.5685 | 20 | 0.6111 | - | - | - | - | - | | 2.0 | 26 | - | 0.8173 | 0.8192 | 0.8111 | 0.7961 | 0.7661 | | 2.3249 | 30 | 0.4333 | - | - | - | - | - | | 3.0 | 39 | - | 0.8193 | 0.8211 | 0.8127 | 0.7996 | 0.7729 | | 3.0812 | 40 | 0.3465 | - | - | - | - | - | | **3.731** | **48** | **-** | **0.8194** | **0.8223** | **0.8132** | **0.7997** | **0.7743** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.12.8 - Sentence Transformers: 3.3.1 - Transformers: 4.48.0 - PyTorch: 2.2.2 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```