---
library_name: transformers
license: llama3.2
base_model: meta-llama/Llama-3.2-3B-Instruct
tags:
- generated_from_trainer
datasets:
- axolotl_format_data_llama.json
model-index:
- name: models/llama
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.5.3.dev38+g5726141c`
```yaml
base_model: meta-llama/Llama-3.2-3B-Instruct
datasets:
- path: axolotl_format_data_llama.json
type: input_output
dataset_prepared_path: last_run_prepared
output_dir: ./models/llama
sequence_length: 4096
wandb_project: agent-v0
wandb_name: llama-3b
train_on_inputs: false
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 5
optimizer: adamw_torch
learning_rate: 2e-5
bf16: true
logging_steps: 10
flash_attention: true
warmup_steps: 50
saves_per_epoch: 1
weight_decay: 0.0
deepspeed: axolotl/deepspeed_configs/zero3_bf16.json
special_tokens:
pad_token: <|end_of_text|>
```
# models/llama
This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on the axolotl_format_data_llama.json dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3