--- tags: - ctranslate2 - int8 - float16 license: apache-2.0 language: - en datasets: - togethercomputer/RedPajama-Data-1T - OpenAssistant/oasst1 - databricks/databricks-dolly-15k widget: - text: ": Write an email to my friends inviting them to come to my home on Friday for a dinner party, bring their own food to share.\n:" example_title: "Email Writing" - text: ": Create a list of things to do in San Francisco\n:" example_title: "Brainstorming" inference: parameters: temperature: 0.7 top_p: 0.7 top_k: 50 max_new_tokens: 128 --- # # Fast-Inference with Ctranslate2 Speedup inference by 2x-8x using int8 inference in C++ quantized version of [togethercomputer/RedPajama-INCITE-Chat-7B-v0.1](https://huggingface.co/togethercomputer/RedPajama-INCITE-Chat-7B-v0.1) ```bash pip install hf-hub-ctranslate2>=2.0.6 ctranslate2>=3.13.0 ``` Converted on 2023-05-19 using ``` ct2-transformers-converter --model togethercomputer/RedPajama-INCITE-Chat-7B-v0.1 --output_dir /home/michael/tmp-ct2fast-RedPajama-INCITE-Chat-7B-v0.1 --force --copy_files tokenizer.json README.md tokenizer_config.json generation_config.json special_tokens_map.json .gitattributes --quantization float16 ``` Checkpoint compatible to [ctranslate2](https://github.com/OpenNMT/CTranslate2) and [hf-hub-ctranslate2](https://github.com/michaelfeil/hf-hub-ctranslate2) - `compute_type=int8_float16` for `device="cuda"` - `compute_type=int8` for `device="cpu"` ```python from hf_hub_ctranslate2 import TranslatorCT2fromHfHub, GeneratorCT2fromHfHub from transformers import AutoTokenizer model_name = "michaelfeil/ct2fast-RedPajama-INCITE-Chat-7B-v0.1" # use either TranslatorCT2fromHfHub or GeneratorCT2fromHfHub here, depending on model. model = GeneratorCT2fromHfHub( # load in int8 on CUDA model_name_or_path=model_name, device="cuda", compute_type="int8_float16", tokenizer=AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-7B-v0.1") ) outputs = model.generate( text=["How do you call a fast Flan-ingo?", "User: How are you doing?"], ) print(outputs) ``` # Licence and other remarks: This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo. # Original description tags: - ctranslate2 - int8 - float16 # RedPajama-INCITE-Chat-7B-v0.1 RedPajama-INCITE-Chat-7B-v0.1 was developed by Together and leaders from the open-source AI community including Ontocord.ai, ETH DS3Lab, AAI CERC, Université de Montréal, MILA - Québec AI Institute, Stanford Center for Research on Foundation Models (CRFM), Stanford Hazy Research research group and LAION. It is fine-tuned on OASST1 and Dolly2 to enhance chatting ability. - Base Model: [RedPajama-INCITE-Base-7B-v0.1](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1) - Instruction-tuned Version: [RedPajama-INCITE-Instruct-7B-v0.1](https://huggingface.co/togethercomputer/RedPajama-INCITE-Instruct-7B-v0.1) - Chat Version: [RedPajama-INCITE-Chat-7B-v0.1](https://huggingface.co/togethercomputer/RedPajama-INCITE-Chat-7B-v0.1) ## Model Details - **Developed by**: Together Computer. - **Model type**: Language Model - **Language(s)**: English - **License**: Apache 2.0 - **Model Description**: A 6.9B parameter pretrained language model. # Quick Start Please note that the model requires `transformers` version >= 4.25.1. To prompt the chat model, use the following format: ``` : [Instruction] : ``` ## GPU Inference This requires a GPU with 16GB memory. ```python import torch import transformers from transformers import AutoTokenizer, AutoModelForCausalLM MIN_TRANSFORMERS_VERSION = '4.25.1' # check transformers version assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.' # init tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-7B-v0.1") model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-7B-v0.1", torch_dtype=torch.float16) model = model.to('cuda:0') # infer prompt = ": Who is Alan Turing?\n:" inputs = tokenizer(prompt, return_tensors='pt').to(model.device) input_length = inputs.input_ids.shape[1] outputs = model.generate( **inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True ) token = outputs.sequences[0, input_length:] output_str = tokenizer.decode(token) print(output_str) """ Alan Mathison Turing (23 June 1912 7 June 1954) was an English computer scientist, mathematician, logician, cryptanalyst, philosopher, mathematician, and theoretical biologist. """ ``` ## GPU Inference in Int8 This requires a GPU with 12GB memory. To run inference with int8, please ensure you have installed accelerate and bitandbytes. You can install them with the following command: ```bash pip install accelerate pip install bitsandbytes ``` Then you can run inference with int8 as follows: ```python import torch import transformers from transformers import AutoTokenizer, AutoModelForCausalLM MIN_TRANSFORMERS_VERSION = '4.25.1' # check transformers version assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.' # init tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-7B-v0.1") model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-7B-v0.1", device_map='auto', torch_dtype=torch.float16, load_in_8bit=True) # infer prompt = ": Who is Alan Turing?\n:" inputs = tokenizer(prompt, return_tensors='pt').to(model.device) input_length = inputs.input_ids.shape[1] outputs = model.generate( **inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True ) token = outputs.sequences[0, input_length:] output_str = tokenizer.decode(token) print(output_str) """ Alan Mathison Turing (23 June 1912 – 7 June 1954) was an English computer scientist, mathematician, logician, cryptanalyst, philosopher, and theoretical biologist. """ ``` ## CPU Inference ```python import torch import transformers from transformers import AutoTokenizer, AutoModelForCausalLM MIN_TRANSFORMERS_VERSION = '4.25.1' # check transformers version assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.' # init tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-7B-v0.1") model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-7B-v0.1", torch_dtype=torch.bfloat16) # infer prompt = ": Who is Alan Turing?\n:" inputs = tokenizer(prompt, return_tensors='pt').to(model.device) input_length = inputs.input_ids.shape[1] outputs = model.generate( **inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True ) token = outputs.sequences[0, input_length:] output_str = tokenizer.decode(token) print(output_str) """ Alan Mathison Turing, OBE, FRS, (23 June 1912 – 7 June 1954) was an English computer scientist, mathematician, logician, cryptanalyst, philosopher, and theoretical biologist. """ ``` Please note that since `LayerNormKernelImpl` is not implemented in fp16 for CPU, we use `bfloat16` for CPU inference. # Uses ## Direct Use Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use It is the responsibility of the end user to ensure that the model is used in a responsible and ethical manner. #### Out-of-Scope Use `RedPajama-INCITE-Chat-7B-v0.1` is a language model and may not perform well for other use cases outside of its intended scope. For example, it may not be suitable for use in safety-critical applications or for making decisions that have a significant impact on individuals or society. It is important to consider the limitations of the model and to only use it for its intended purpose. #### Misuse and Malicious Use `RedPajama-INCITE-Chat-7B-v0.1` is designed for language modeling. Misuse of the model, such as using it to engage in illegal or unethical activities, is strictly prohibited and goes against the principles of the project. Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating fake news, misinformation, or propaganda - Promoting hate speech, discrimination, or violence against individuals or groups - Impersonating individuals or organizations without their consent - Engaging in cyberbullying or harassment - Defamatory content - Spamming or scamming - Sharing confidential or sensitive information without proper authorization - Violating the terms of use of the model or the data used to train it - Creating automated bots for malicious purposes such as spreading malware, phishing scams, or spamming ## Limitations `RedPajama-INCITE-Chat-7B-v0.1`, like other language models, has limitations that should be taken into consideration. For example, the model may not always provide accurate or relevant answers, particularly for questions that are complex, ambiguous, or outside of its training data. We therefore welcome contributions from individuals and organizations, and encourage collaboration towards creating a more robust and inclusive chatbot. ## Training **Training Data** Please refer to [togethercomputer/RedPajama-Data-1T](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) **Training Procedure** - **Hardware:** 8 A100 - **Optimizer:** Adam - **Gradient Accumulations**: 1 - **Num of Tokens:** 131M tokens - **Learning rate:** 1e-5 ## Community Join us on [Together Discord](https://discord.gg/6ZVDU8tTD4)