--- license: cc-by-nc-sa-4.0 datasets: - camel-ai/code - ehartford/wizard_vicuna_70k_unfiltered - anon8231489123/ShareGPT_Vicuna_unfiltered - teknium1/GPTeacher/roleplay-instruct-v2-final - teknium1/GPTeacher/codegen-isntruct - timdettmers/openassistant-guanaco - camel-ai/math - project-baize/baize-chatbot/medical_chat_data - project-baize/baize-chatbot/quora_chat_data - project-baize/baize-chatbot/stackoverflow_chat_data - camel-ai/biology - camel-ai/chemistry - camel-ai/ai_society - jondurbin/airoboros-gpt4-1.2 - LongConversations - camel-ai/physics tags: - ctranslate2 - int8 - float16 - Composer - MosaicML - llm-foundry inference: false --- # # Fast-Inference with Ctranslate2 Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU. quantized version of [mosaicml/mpt-30b-chat](https://huggingface.co/mosaicml/mpt-30b-chat) ```bash pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.16.0 ``` ```python # from transformers import AutoTokenizer model_name = "michaelfeil/ct2fast-mpt-30b-chat" from hf_hub_ctranslate2 import GeneratorCT2fromHfHub model = GeneratorCT2fromHfHub( # load in int8 on CUDA model_name_or_path=model_name, device="cuda", compute_type="int8_float16", # tokenizer=AutoTokenizer.from_pretrained("{ORG}/{NAME}") ) outputs = model.generate( text=["def fibonnaci(", "User: How are you doing? Bot:"], max_length=64, include_prompt_in_result=False ) print(outputs) ``` Checkpoint compatible to [ctranslate2>=3.16.0](https://github.com/OpenNMT/CTranslate2) and [hf-hub-ctranslate2>=2.12.0](https://github.com/michaelfeil/hf-hub-ctranslate2) - `compute_type=int8_float16` for `device="cuda"` - `compute_type=int8` for `device="cpu"` Converted on 2023-06-23 using ``` ct2-transformers-converter --model mosaicml/mpt-30b-chat --output_dir ~/tmp-ct2fast-mpt-30b-chat --force --copy_files tokenizer.json README.md tokenizer_config.json generation_config.json special_tokens_map.json .gitattributes --quantization int8_float16 --trust_remote_code ``` # Licence and other remarks: This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo. # Original description # MPT-30B-Chat MPT-30B-Chat is a chatbot-like model for dialogue generation. It was built by finetuning [MPT-30B](https://huggingface.co/mosaicml/mpt-30b) on the [ShareGPT-Vicuna](https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered), [Camel-AI](https://huggingface.co/camel-ai), [GPTeacher](https://github.com/teknium1/GPTeacher), [Guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco), [Baize](https://github.com/project-baize/baize-chatbot) and some generated datasets. * License: _CC-By-NC-SA-4.0_ (non-commercial use only) * [Demo on Hugging Face Spaces](https://huggingface.co/spaces/mosaicml/mpt-30b-chat) This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture. ## Model Date June 22, 2023 ## Model License _CC-By-NC-SA-4.0_ (non-commercial use only) ## Documentation * [Blog post: Raising the bar for open-source foundation models](https://www.mosaicml.com/blog/mpt-30b) * [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/) * Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)! ### Example Dialogue **ksreenivasan**: > I want you to come up with a tweet based on this summary of the article: > > We are excited to extend the MosaicML Foundation Series with MPT-30B, a new commercially licensed open-source model that is significantly more powerful, and outperforms the > original GPT-3. In addition, we are releasing two fine-tuned models, MPT-30B-Instruct and MPT-30B-Chat, that are built on top of MPT-30B and excel at short-form instruction > following and multi-turn conversations, respectively. > All MPT-30B models come with special features that differentiate them from other LLMs, including an 8k token context window (which can be further extended via finetuning; > see MPT-7B-StoryWriter), support for context-length extrapolation via ALiBi, and efficient inference + training performance via FlashAttention. It also has strong coding > abilities thanks to its pretraining data mixture. **MPT-30B-Chat**: > "Revolutionize your AI capabilities with MosaicML's latest addition, MPT-30B! Outperforming GPT-3, this open-source model is significantly more powerful and comes with > finely-tuned models for exceptional instruction following and multi-turn conversations. Unleash the potential of an 8k token context window, ALiBi support, and FlashAttention. > Experience the future of AI with MosaicML! #AI #ML #innovation" **ksreenivasan**: > Is there anything you want to say to MosaicML about this exciting news? **MPT-30B-Chat**: > As your AI marketing assistant, I would say that this is truly exciting news for the AI community! MosaicML's latest addition, MPT-30B, is poised to revolutionize the industry with its powerful open-source capabilities and finely-tuned models for instruction following and multi-turn conversations. > The special features, including the 8k token context window, ALiBi support, and FlashAttention, are sure to set MosaicML's MPT-30B apart from other LLMs. > Congratulations to the MosaicML team on this incredible achievement! ## How to Use This model is best used with the MosaicML [llm-foundry repository](https://github.com/mosaicml/llm-foundry) for training and finetuning. ```python import transformers model = transformers.AutoModelForCausalLM.from_pretrained( 'mosaicml/mpt-30b-chat', trust_remote_code=True ) ``` Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package. `MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more. To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision: ```python import torch import transformers name = 'mosaicml/mpt-30b-chat' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.attn_config['attn_impl'] = 'triton' # change this to use triton-based FlashAttention config.init_device = 'cuda:0' # For fast initialization directly on GPU! model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, torch_dtype=torch.bfloat16, # Load model weights in bfloat16 trust_remote_code=True ) ``` The model was trained initially with a sequence length of 4096 with an additional pretraining stage for sequence length adapation up to 8192. However, ALiBi enables users to increase the maximum sequence length even further during finetuning and/or inference. For example: ```python import transformers name = 'mosaicml/mpt-30b-chat' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.max_seq_len = 16384 # (input + output) tokens can now be up to 16384 model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, trust_remote_code=True ) ``` This model was trained with the MPT-30B tokenizer which is based on the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer and includes additional padding and eos tokens. ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('mosaicml/mpt-30b') ``` The model can then be used, for example, within a text-generation pipeline. Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html). ```python from transformers import pipeline with torch.autocast('cuda', dtype=torch.bfloat16): inputs = tokenizer('Here is a recipe for vegan banana bread:\n', return_tensors="pt").to('cuda') outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # or using the HF pipeline pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0') with torch.autocast('cuda', dtype=torch.bfloat16): print( pipe('Here is a recipe for vegan banana bread:\n', max_new_tokens=100, do_sample=True, use_cache=True)) ``` ## Model Description The architecture is a modification of a standard decoder-only transformer. The model has been modified from a standard transformer in the following ways: * It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) * It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings * It does not use biases | Hyperparameter | Value | |----------------|-------| |n_parameters | 29.95B | |n_layers | 48 | | n_heads | 64 | | d_model | 7168 | | vocab size | 50432 | | sequence length | 8192 | ## Data Mix The model was trained on the following data mix: | Data Source | Number of Tokens in Source | Proportion | |-------------|----------------------------|------------| | Airoboros/GPT4 | 26.4M | 1.71% | | Baize | 55.0M | 3.57% | | Camel | 301M | 19.54% | | GPTeacher | 7.56M | 0.49% | | Guanaco | 15.6M | 1.02% | | LongCoversations | 18.4M | 1.19% | | ShareGPT | 821M | 53.24% | | WizardLM | 297M | 19.23% | "LongConversations" is a GPT3.5/4-generated dataset, details of which will be released at a later date. ### Training Configuration This model was trained on 64 H100s for about 7.6 hours using the [MosaicML Platform](https://www.mosaicml.com/platform). The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the AdamW optimizer. ## Limitations and Biases _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_ MPT-30B-Chat can produce factually incorrect output, and should not be relied on to produce factually accurate information. MPT-30B-Chat was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. ## Acknowledgements This model was finetuned by Sam Havens and the MosaicML NLP team ## Disclaimer The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes. ## MosaicML Platform If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b). ## Citation Please cite this model using the following format: ``` @online{MosaicML2023Introducing, author = {MosaicML NLP Team}, title = {Introducing MPT-30B: Raising the bar for open-source foundation models}, year = {2023}, url = {www.mosaicml.com/blog/mpt-30b}, note = {Accessed: 2023-06-22}, urldate = {2023-06-22} } ```