--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: finetuned-indian-food results: [] --- # finetuned-indian-food This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2692 - Accuracy: 0.9341 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.3949 | 0.3003 | 100 | 0.6593 | 0.8395 | | 0.2833 | 0.6006 | 200 | 0.3689 | 0.9001 | | 0.4671 | 0.9009 | 300 | 0.5113 | 0.8682 | | 0.1231 | 1.2012 | 400 | 0.3643 | 0.9097 | | 0.1812 | 1.5015 | 500 | 0.3605 | 0.9033 | | 0.2414 | 1.8018 | 600 | 0.3426 | 0.9203 | | 0.0845 | 2.1021 | 700 | 0.3238 | 0.9150 | | 0.1232 | 2.4024 | 800 | 0.3523 | 0.9129 | | 0.1553 | 2.7027 | 900 | 0.3726 | 0.9065 | | 0.1323 | 3.0030 | 1000 | 0.2706 | 0.9352 | | 0.1057 | 3.3033 | 1100 | 0.2697 | 0.9373 | | 0.1585 | 3.6036 | 1200 | 0.2695 | 0.9341 | | 0.0312 | 3.9039 | 1300 | 0.2692 | 0.9341 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0