import os os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' import sys import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel, TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments, get_linear_schedule_with_warmup class GPT2Assistant: def __init__(self): self.tokenizer = GPT2Tokenizer.from_pretrained("/Users/migueldeguzman/Desktop/gpt2xl_algos/RLLMv18/layer1/") def fine_tune(self, answer_file_path, model_output_dir, epochs=1.0): #previously 1.0 self.model = GPT2LMHeadModel.from_pretrained("/Users/migueldeguzman/Desktop/gpt2xl_algos/RLLMv18/layer1/") train_dataset = TextDataset( tokenizer=self.tokenizer, file_path=answer_file_path, block_size=128 ) data_collator = DataCollatorForLanguageModeling( tokenizer=self.tokenizer, mlm=False ) total_steps = len(train_dataset) * epochs warmup_steps = 0.1 * total_steps optimizer = torch.optim.Adam(self.model.parameters(), lr=42e-6, weight_decay=0.005) #lr=3.536842105e-5 #scheduler_cosine = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, epochs) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps) training_args = TrainingArguments( output_dir=model_output_dir, overwrite_output_dir=True, num_train_epochs=epochs, per_device_train_batch_size=4, #previously 16 save_steps=10_000, save_total_limit=2, gradient_accumulation_steps=4, #previously 8 lr_scheduler_type='cosine', #constant warmup_steps=500 ) trainer = Trainer( model=self.model, args=training_args, data_collator=data_collator, train_dataset=train_dataset, optimizers=(optimizer, scheduler) # Pass both the optimizer and scheduler as a tuple ) trainer.train() self.model.save_pretrained(model_output_dir) self.tokenizer.save_pretrained(model_output_dir) def generate_answer(self, prompt, max_length=1000): input_ids = self.tokenizer.encode(prompt, return_tensors="pt") if self.tokenizer.pad_token_id is None: self.tokenizer.pad_token = self.tokenizer.eos_token attention_mask = (input_ids != self.tokenizer.pad_token_id).long() output = self.model.generate( input_ids, attention_mask=attention_mask, max_length=max_length, num_return_sequences=1, no_repeat_ngram_size=2, do_sample=True, top_k=50, top_p=0.95, temperature=0.000000000000000000000000000000000001 ) answer = self.tokenizer.decode(output[0], skip_special_tokens=True) return answer[len(prompt):] def query(self, prompt): generated_answer = self.generate_answer(prompt) print(generated_answer) return generated_answer def main(): text_file_path = "/Users/migueldeguzman/Desktop/gpt2xl_algos/RLLMv18/layer2/shadow_integration.text" model_output_dir = "/Users/migueldeguzman/Desktop/gpt2xl_algos/RLLMv18/layer2/" assistant = GPT2Assistant() choice = input("Do you want to fine-tune a new model (n) or load an existing one (e)? (n/e): ") if choice.lower() == "n": print("Fine-tuning the model...") assistant.fine_tune(text_file_path, model_output_dir) print("Model fine-tuning complete.") elif choice.lower() == "e": print("Loading the existing model...") assistant.model = GPT2LMHeadModel.from_pretrained(model_output_dir) print("Existing model loaded.") else: print("Invalid choice. Exiting the program.") sys.exit() while True: prompt = input("Enter your question (or type 'exit' to stop): ") if prompt.lower() == "exit": break print("Answering in progress...") generated_answer = assistant.query(prompt) print("\n") if __name__ == "__main__": main()