--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-v3-polish-impaired results: [] --- # whisper-large-v3-polish-impaired This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5641 - Wer: 83.0040 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 2.239 | 0.05 | 1 | 2.7489 | 84.5850 | | 1.8286 | 0.1 | 2 | 2.7304 | 84.5850 | | 2.1458 | 0.15 | 3 | 2.6956 | 84.5850 | | 2.5037 | 0.2 | 4 | 2.6399 | 83.3992 | | 2.5533 | 0.25 | 5 | 2.5641 | 83.0040 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cpu - Datasets 3.2.0 - Tokenizers 0.21.0