--- license: other license_name: deepseek-license license_link: LICENSE --- # Quantization details - Original model: [deepseek-ai/deepseek-coder-7b-base-v1.5](https://huggingface.co/deepseek-ai/deepseek-coder-7b-base-v1.5) - Quantized with *llama.cpp* revision: `ceca1ae` - Ollama repository: [wojtek/deepseek-coder](https://ollama.com/wojtek/deepseek-coder) # Upstream README

DeepSeek Coder

[🏠Homepage] | [🤖 Chat with DeepSeek Coder] | [Discord] | [Wechat(微信)]


### 1. Introduction of Deepseek-Coder-7B-Base-v1.5 Deepseek-Coder-7B-Base-v1.5 is continue pre-trained from Deepseek-LLM 7B on 2T tokens by employing a window size of 4K and next token prediction objective. - **Home Page:** [DeepSeek](https://deepseek.com/) - **Repository:** [deepseek-ai/deepseek-coder](https://github.com/deepseek-ai/deepseek-coder) - **Chat With DeepSeek Coder:** [DeepSeek-Coder](https://coder.deepseek.com/) ### 2. Evaluation Results DeepSeek Coder ### 3. How to Use Here give an example of how to use our model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-7b-base-v1.5", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-7b-base-v1.5", trust_remote_code=True).cuda() input_text = "#write a quick sort algorithm" inputs = tokenizer(input_text, return_tensors="pt").cuda() outputs = model.generate(**inputs, max_length=128) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ### 4. License This code repository is licensed under the MIT License. The use of DeepSeek Coder models is subject to the Model License. DeepSeek Coder supports commercial use. See the [LICENSE-MODEL](https://github.com/deepseek-ai/deepseek-coder/blob/main/LICENSE-MODEL) for more details. ### 5. Contact If you have any questions, please raise an issue or contact us at [service@deepseek.com](mailto:service@deepseek.com).