---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 남성 가죽장갑 GOT379X 스몰사이즈/닥스(장갑) 블랙 롯데쇼핑(주)
- text: 남성 가죽장갑 GPS742X 블랙 롯데백화점1관
- text: 방한 손가락 벙어리 장갑 기모 스마트폰 키보드 1.블랙 건강드림
- text: 데일리 털장갑 겨울 휴대폰 터치 남성 인기 신상장갑 캐주얼장갑 남자손장갑 방한장갑 직장인장갑 블랙 지플레이스
- text: 은창)크리스마스 러블리 벙어리 니트 장갑 털장갑 루돌프 그레이 비니벨라
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.8876621100595864
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0 |
- '경량 방수토시 팔토시 작업 위생 안전 경량방수토시(블랙계열) 바움하우스'
- '사러왕 운전 팔토시 레이스 여성 쉬폰 골프토시 워머 암 핸드 롱장갑 4 레이스 여성팔토시 살구색 언벤샵'
- '여성운전 팔토시 화이트 태양금'
|
| 2.0 | - '[갤러리아] 닥스 DCGV3F287 [남녀공용] 베이지 캐시미어 니트 장갑(타임월드) 한화갤러리아(주)'
- '[갤러리아] 루이까또즈 방울방울 니트워머 GGILW30005 GGILW30005 베이지 한화갤러리아(주)'
- '(신세계김해점)질스튜어트 여성 가죽장갑 GBS740X 블랙(01) 신세계백화점'
|
| 0.0 | - '남성 가죽 콤비장갑 GPD293H/닥스(장갑) 블랙 롯데쇼핑(주)'
- '(10%+10%쿠폰) 시즌오프 잡화 / 장갑 목도리 스타킹 양말 방한용품 1_15.윈터 마스크캡_1+1 스킨라이즈'
- '[갤러리아] [닥스] 남성 가죽 장갑 (D) GPS332H(타임월드) 진브라운91 한화갤러리아(주)'
|
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.8877 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac12")
# Run inference
preds = model("남성 가죽장갑 GPS742X 블랙 롯데백화점1관")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 4 | 10.5733 | 24 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 50 |
| 1.0 | 50 |
| 2.0 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0417 | 1 | 0.4357 | - |
| 2.0833 | 50 | 0.1092 | - |
| 4.1667 | 100 | 0.006 | - |
| 6.25 | 150 | 0.0002 | - |
| 8.3333 | 200 | 0.0002 | - |
| 10.4167 | 250 | 0.0001 | - |
| 12.5 | 300 | 0.0001 | - |
| 14.5833 | 350 | 0.0001 | - |
| 16.6667 | 400 | 0.0001 | - |
| 18.75 | 450 | 0.0001 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```