---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 아이깨끗해 핸드워시 490ml용기+450ml리필 2개 29.리필 200ml 5개(순) 홈>전체상품;홈>인기상품;(#M)홈>▶판매 BEST
Naverstore > 화장품/미용 > 바디케어 > 핸드케어
- text: 몰튼브라운 바디워시 300ml 21종 4. 네온 앰버 (#M)홈>화장품/미용>바디케어>바디클렌저 Naverstore > 화장품/미용
> 바디케어 > 바디클렌저
- text: Biotherm Homme Day Control Antiperspirant Roll-On Multicolor, 2.53oz, 1 pack
비오템 옴/8837866 LotteOn > 뷰티 > 바디케어 > 데오드란트 LotteOn > 뷰티 > 바디케어 > 데오드란트
- text: 에스테소피 스크럽 솔트 솝 진저 1kg (#M)11st>바디케어>바디스크럽>바디스크럽 11st > 뷰티 > 바디케어 > 바디스크럽
- text: LUSH BUBBLE BAR Creamy Candy 러쉬 입욕제 버블 바 크리미 캔디 100g 2팩 (#M)홈>화장품/미용>바디케어>입욕제
Naverstore > 화장품/미용 > 바디케어 > 입욕제
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8482412060301507
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 15 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 |
- '조르지오 아르마니 코드 데오도란트 스틱 남성용 무알코올 2.6온스 / 75g LotteOn > 뷰티 > 향수 > 남성향수 LotteOn > 뷰티 > 향수 > 남성향수'
- '니베아 데오드란트 스틱/ 롤온/ 스프레이 X 2개 17.(스프레이 200) 드라이임팩트(M)_05.(롤온 50) 펄앤뷰티 (#M)바디/헤어>바디케어>데오드란트 Gmarket > 뷰티 > 바디/헤어 > 바디케어 > 데오드란트'
- '펄 앤 뷰티 데오드란트 스프레이 48h 200ml 4개 (#M)11st>바디케어>데오드란트>데오드란트 11st > 뷰티 > 바디케어 > 데오드란트 > 데오드란트'
|
| 10 | - '[백화점] 아브라카다브라 버블 스틱 60g - 버블 바/입욕제 LotteOn > 뷰티 > 헤어/바디 > 입욕제 > 솔트/파우더 LotteOn > 뷰티 > 헤어/바디 > 입욕제 > 솔트/파우더'
- '영국 러쉬 사쿠라 배쓰밤 입욕제 Sakura bath bomb 200g 3개 (#M)쿠팡 홈>생활용품>헤어/바디/세안>샤워/입욕용품>입욕제>버블바스 Coupang > 뷰티 > 바디 > 샤워/입욕용품 > 입욕제 > 버블바스'
- '바스참 사해소금 버블바스 레몬 1kg/거품입욕제/스푼포함 01-바스참버블바스-라벤더1kg LotteOn > 뷰티 > 헤어/바디 > 입욕제 > 버블바스 LotteOn > 뷰티 > 헤어/바디 > 입욕제'
|
| 4 | - '(공식) 더마비 바디로션/기획/멀티오일/크림/워시 1+1 B8.(세라엠디) 바디오일 200ml×2개_S1.튜브견본(랜덤) (#M)화장품/향수>선케어>선크림 Gmarket > 뷰티 > 화장품/향수 > 선케어 > 선크림'
- '벨레다 아니카 마사지 오일 100ml LotteOn > 뷰티 > 스킨케어 > 오일 LotteOn > 뷰티 > 스킨케어 > 오일'
- '쏠레이 브룰런트 쉬머링 바디 오일 100ML (#M)DepartmentSsg > TOM FORD > FRAGRANCE > BODY LOREAL > DepartmentSsg > 아틀리에 코롱 > Generic > 향수'
|
| 13 | - '[LG생활건강] 세이프솝 카카오 핸드워시 500ml X2개 리틀라이언 리틀라이언 500ml x 2 LotteOn > 뷰티 > 핸드케어 > 손소독제 LotteOn > 뷰티 > 헤어/바디 > 핸드케어 > 손소독제'
- '아이깨끗해 대용량 용기 490ml x 4개 2.순 용기 490ml x 4개 ssg > 뷰티 > 헤어/바디 > 바디케어 > 핸드케어 ssg > 뷰티 > 헤어/바디 > 바디케어 > 핸드케어'
- '[살림백서] 헤어바디 BEST 모음전 샴푸/워시/바디로션/핸드크림/핸드워시 외 오푼티아 라이스앤허브 탈모 아크네 01. 1+1 살림백서 핸드워시 손세정제 500ml_02) 레몬 향 (#M)헤어케어>샴푸>일반샴푸 11st Hour Event > 패션/뷰티 > 뷰티 > 헤어 > 샴푸/린스/기능성'
|
| 7 | - '파츌리 리비에라 100ml + BEST 4ml X 4종 증정 일렉트릭 블루 LotteOn > 뷰티 > 명품화장품 > 향수/디퓨저 > 공용향수 LotteOn > 뷰티 > 향수 > 남녀공용향수'
- '센티드 바디 파우더 15g DepartmentLotteOn > 뷰티 > 향수 > 여성용 > 51ml~100ml DepartmentLotteOn > 뷰티 > 향수 > 여성용 > 31ml~50ml'
- '존슨즈 베이비 파우더 오리지날향 400g × 3개 쿠팡 홈>출산/유아동>욕실용품/스킨케어>기저귀크림/파우더>기저귀파우더;(#M)쿠팡 홈>출산/유아동>기저귀>기저귀크림/파우더>기저귀파우더 Coupang > 뷰티 > 바디 > 바디로션/크림 > 바디파우더'
|
| 14 | - '[카밀] 핸드크림 본품 2개+미니 1개+케이스 증정(행사기간: 6/17~6/27일 결제건) 맨_프레쉬 (#M)11st>바디케어>핸드크림>핸드크림 11st > 뷰티 > 바디케어 > 핸드크림'
- '카밀 핸드 앤 네일 우레아 핸드크림 75ml x 2개 (#M)GSSHOP>뷰티>바디케어>핸드케어 GSSHOP > 뷰티 > 바디케어 > 핸드케어'
- '[카밀 오늘특가!] 핸드 앤 네일 크림 클래식 100ml 카밀 인텐시브 100ml (강력보습) (#M)홈>전체상품 Naverstore > 화장품/미용 > 바디케어 > 핸드케어'
|
| 1 | - 'JO MALONE LONDON Peony and Blush Suede body cream 조말론 바디 크림 피오니 앤 블러쉬 스웨이드 50ml 50ml × 1개 (#M)쿠팡 홈>뷰티>바디>바디로션/크림>바디크림 Coupang > 뷰티 > 바디 > 바디로션/크림 > 바디크림'
- '프리메라 망고버터 바디로션 380ml 380ml × 2개 (#M)쿠팡 홈>뷰티>바디>바디로션/크림>바디로션 Coupang > 뷰티 > 바디 > 바디로션/크림 > 바디로션'
- '[해외직구/홍콩직배송] 홍콩 제니베이커리 버터 쿠키 640g(L) ssg > 뷰티 > 스킨케어 > 스킨/토너 ssg > 뷰티 > 스킨케어 > 스킨/토너'
|
| 3 | - '온더바디 때 필링 500ml (#M)11st>바디케어>바디스크럽>바디스크럽 11st > 뷰티 > 바디케어 > 바디스크럽'
- '플루 스크럽 인텐시브슬림핏 180g x10+50g x1+그린티수딩젤2 (#M)뷰티>화장품/향수>클렌징>기획세트 CJmall > 뷰티 > 헤어/바디/미용기기 > 샤워/입욕용품 > 스크럽'
- 'NEW 쟈도르 쉬머링 스크럽 150ML 쟈도르 쉬머링 스크럽 150ML (#M)신세계백화점/향수/여성향수 DepartmentSsg > 명품화장품 > 향수 > 여성향수'
|
| 6 | - '2021 록시땅 멀티 라인 어드벤트 캘린더 1set (#M)홈>2021 어드벤트 캘린더 Naverstore > 화장품/미용 > 바디케어 > 바디케어세트'
- '밀크바오밥 세라 헤어&바디 4종 선물세트 (화이트머스크) 단품없음 (#M)쿠팡 홈>뷰티>헤어>헤어세트 Coupang > 뷰티 > 헤어 > 헤어세트'
- '록시땅 코쿤 드 세레니떼 릴랙싱 필로우 미스트 100ml [00001] 코쿤 드 세레니떼 릴랙싱 필로우 미스트 (#M)11st>헤어케어>헤어왁스>헤어왁스 11st > 뷰티 > 헤어케어 > 헤어왁스'
|
| 11 | - '라이콘 스트립 왁스 800g 12종 / lycon strip wax 800g 소야미 800g (#M)홈>호주왁싱>라이콘 Naverstore > 화장품/미용 > 바디케어 > 제모제'
- '[MANSIM]무스타치 수염세럼 제모세럼 18ml (#M)홈>화장품/미용>남성화장품>에센스 Naverstore > 화장품/미용 > 남성화장품 > 에센스'
- '모레모 클레이 제모크림 핑크(1개) + 클레이(1개) × 상세설명 참조 Coupang > 뷰티 > 바디 > 제모/슬리밍/청결제 > 제모/왁싱;(#M)쿠팡 홈>뷰티>바디>제모/슬리밍/청결제>제모/왁싱>제모제/제모크림 Coupang > 뷰티 > 바디 > 제모/슬리밍/청결제 > 제모/왁싱 > 제모제/제모크림'
|
| 12 | - '딥 모이스쳐 풋크림 x2개 MinSellAmount (#M)바디/헤어>핸드케어/풋케어>풋크림 Gmarket > 뷰티 > 바디/헤어 > 핸드케어/풋케어 > 풋크림'
- '티타니아 메탈샌드 더블 풋파일 랜덤 발송 1개 Coupang > 뷰티 > 바디 > 핸드/풋/데오 > 풋케어;(#M)쿠팡 홈>생활용품>헤어/바디/세안>핸드/풋/데오>풋케어>각질제거기 Coupang > 뷰티 > 바디 > 핸드/풋/데오 > 풋케어'
- '푸드어홀릭 베이비파우더 풋크림 100g MinSellAmount (#M)바디/헤어>핸드케어/풋케어>풋크림 Gmarket > 뷰티 > 바디/헤어 > 핸드케어/풋케어 > 풋크림'
|
| 9 | - '[백화점]프리메라 [8월] 후리 앤 후리 소프트 폼 150ml 세트 (#M)GSSHOP>뷰티>명품화장품>현대백화점 GSSHOP > 뷰티 > 명품화장품 > 현대백화점 > 바디/헤어케어'
- '포엘리에 이너퍼퓸 오드미엘 5ml × 1개 쿠팡 홈>생활용품>헤어/바디/세안>제모/슬리밍/청결제>청결제>여성청결제;Coupang > 뷰티 > 바디 > 제모/슬리밍/청결제 > 청결제;(#M)쿠팡 홈>생활용품>생리대/성인기저귀>여성청결제 Coupang > 뷰티 > 바디 > 제모/슬리밍/청결제 > 청결제 > 여성청결제'
- '자스민 캔들 190g ssg > 뷰티 > 향수 > 캔들/디퓨저/아로마 ssg > 뷰티 > 향수 > 캔들/디퓨저/아로마'
|
| 5 | - '뉴스킨 리퀴드바디바 500mlX2개 MinSellAmount (#M)화장품/향수>팩/마스크>워시오프팩 Gmarket > 뷰티 > 화장품/향수 > 팩/마스크 > 워시오프팩'
- '브로앤팁스 본사정품 수퍼클리어 바디워시 480ml (#M)화장품/향수>클렌징/필링>폼클렌징 Gmarket > 뷰티 > 화장품/향수 > 클렌징/필링 > 폼클렌징'
- '닥터브로너스 페퍼민트 퓨어캐스틸솝 475ml + 펌프 세트 MinSellAmount (#M)화장품/향수>클렌징/필링>폼클렌징 Gmarket > 뷰티 > 화장품/향수 > 클렌징/필링 > 폼클렌징'
|
| 8 | - '페이스 솝 80g LotteOn > 뷰티 > 바디케어 > 목욕비누 LotteOn > 뷰티 > 헤어/바디 > 바디케어 > 목욕비누'
- '[공식수입정품] 양키캔들 가든랜턴 캔들워머 가든랜턴 브론즈 ssg > 뷰티 > 향수 > 캔들/디퓨저/아로마 ssg > 뷰티 > 향수 > 캔들/디퓨저/아로마'
- '두보레 백합 비누 (100G X 60EA) (#M)SSG.COM/스킨케어/클렌징/비누 ssg > 뷰티 > 스킨케어 > 클렌징 > 비누'
|
| 2 | - '비욘드 딥 모이스처 바디 미스트 200ml 사용기한 2024년 12월까지 (#M)홈>화장품/미용>바디케어>바디미스트 Naverstore > 화장품/미용 > 바디케어 > 바디미스트'
- '[1+1] 바디판타지 바디미스트 236ml 트와일라잇(236ml)_트와일라잇(236ml) (#M)홈>화장품/미용>바디케어>바디미스트 Naverstore > 화장품/미용 > 바디케어 > 바디미스트'
- '쿤달 퓨어 바디미스트 2구 세트 128ml 퍼퓸 화이트머스크 (#M)홈>화장품/미용>바디케어>바디미스트 Naverstore > 화장품/미용 > 바디케어 > 바디미스트'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.8482 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt3_test_flat_top_cate")
# Run inference
preds = model("에스테소피 스크럽 솔트 솝 진저 1kg (#M)11st>바디케어>바디스크럽>바디스크럽 11st > 뷰티 > 바디케어 > 바디스크럽")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 11 | 21.6635 | 51 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 50 |
| 1 | 50 |
| 2 | 50 |
| 3 | 50 |
| 4 | 50 |
| 5 | 50 |
| 6 | 50 |
| 7 | 46 |
| 8 | 50 |
| 9 | 50 |
| 10 | 50 |
| 11 | 50 |
| 12 | 50 |
| 13 | 50 |
| 14 | 50 |
### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:-----:|:-------------:|:---------------:|
| 0.0009 | 1 | 0.421 | - |
| 0.0429 | 50 | 0.4469 | - |
| 0.0858 | 100 | 0.4667 | - |
| 0.1286 | 150 | 0.4451 | - |
| 0.1715 | 200 | 0.4292 | - |
| 0.2144 | 250 | 0.4105 | - |
| 0.2573 | 300 | 0.4006 | - |
| 0.3002 | 350 | 0.3816 | - |
| 0.3431 | 400 | 0.3448 | - |
| 0.3859 | 450 | 0.3177 | - |
| 0.4288 | 500 | 0.2957 | - |
| 0.4717 | 550 | 0.2719 | - |
| 0.5146 | 600 | 0.2574 | - |
| 0.5575 | 650 | 0.2516 | - |
| 0.6003 | 700 | 0.2601 | - |
| 0.6432 | 750 | 0.2533 | - |
| 0.6861 | 800 | 0.2498 | - |
| 0.7290 | 850 | 0.2401 | - |
| 0.7719 | 900 | 0.2253 | - |
| 0.8148 | 950 | 0.2273 | - |
| 0.8576 | 1000 | 0.223 | - |
| 0.9005 | 1050 | 0.22 | - |
| 0.9434 | 1100 | 0.2089 | - |
| 0.9863 | 1150 | 0.2111 | - |
| 1.0292 | 1200 | 0.2048 | - |
| 1.0720 | 1250 | 0.2072 | - |
| 1.1149 | 1300 | 0.1999 | - |
| 1.1578 | 1350 | 0.1977 | - |
| 1.2007 | 1400 | 0.1938 | - |
| 1.2436 | 1450 | 0.1805 | - |
| 1.2864 | 1500 | 0.1769 | - |
| 1.3293 | 1550 | 0.1764 | - |
| 1.3722 | 1600 | 0.1716 | - |
| 1.4151 | 1650 | 0.1635 | - |
| 1.4580 | 1700 | 0.1529 | - |
| 1.5009 | 1750 | 0.1563 | - |
| 1.5437 | 1800 | 0.148 | - |
| 1.5866 | 1850 | 0.1465 | - |
| 1.6295 | 1900 | 0.1393 | - |
| 1.6724 | 1950 | 0.1278 | - |
| 1.7153 | 2000 | 0.1262 | - |
| 1.7581 | 2050 | 0.12 | - |
| 1.8010 | 2100 | 0.1123 | - |
| 1.8439 | 2150 | 0.1051 | - |
| 1.8868 | 2200 | 0.0968 | - |
| 1.9297 | 2250 | 0.0902 | - |
| 1.9726 | 2300 | 0.0843 | - |
| 2.0154 | 2350 | 0.0784 | - |
| 2.0583 | 2400 | 0.0698 | - |
| 2.1012 | 2450 | 0.0671 | - |
| 2.1441 | 2500 | 0.0605 | - |
| 2.1870 | 2550 | 0.0601 | - |
| 2.2298 | 2600 | 0.0494 | - |
| 2.2727 | 2650 | 0.0484 | - |
| 2.3156 | 2700 | 0.0442 | - |
| 2.3585 | 2750 | 0.0376 | - |
| 2.4014 | 2800 | 0.0356 | - |
| 2.4443 | 2850 | 0.0308 | - |
| 2.4871 | 2900 | 0.0313 | - |
| 2.5300 | 2950 | 0.0321 | - |
| 2.5729 | 3000 | 0.0279 | - |
| 2.6158 | 3050 | 0.0293 | - |
| 2.6587 | 3100 | 0.0304 | - |
| 2.7015 | 3150 | 0.0211 | - |
| 2.7444 | 3200 | 0.0233 | - |
| 2.7873 | 3250 | 0.0204 | - |
| 2.8302 | 3300 | 0.0177 | - |
| 2.8731 | 3350 | 0.0181 | - |
| 2.9160 | 3400 | 0.0183 | - |
| 2.9588 | 3450 | 0.0145 | - |
| 3.0017 | 3500 | 0.0163 | - |
| 3.0446 | 3550 | 0.0145 | - |
| 3.0875 | 3600 | 0.0131 | - |
| 3.1304 | 3650 | 0.0113 | - |
| 3.1732 | 3700 | 0.0136 | - |
| 3.2161 | 3750 | 0.012 | - |
| 3.2590 | 3800 | 0.0109 | - |
| 3.3019 | 3850 | 0.011 | - |
| 3.3448 | 3900 | 0.0113 | - |
| 3.3877 | 3950 | 0.0105 | - |
| 3.4305 | 4000 | 0.0095 | - |
| 3.4734 | 4050 | 0.008 | - |
| 3.5163 | 4100 | 0.0072 | - |
| 3.5592 | 4150 | 0.0077 | - |
| 3.6021 | 4200 | 0.0057 | - |
| 3.6449 | 4250 | 0.0056 | - |
| 3.6878 | 4300 | 0.0061 | - |
| 3.7307 | 4350 | 0.004 | - |
| 3.7736 | 4400 | 0.0049 | - |
| 3.8165 | 4450 | 0.0041 | - |
| 3.8593 | 4500 | 0.0028 | - |
| 3.9022 | 4550 | 0.002 | - |
| 3.9451 | 4600 | 0.0015 | - |
| 3.9880 | 4650 | 0.0012 | - |
| 4.0309 | 4700 | 0.0011 | - |
| 4.0738 | 4750 | 0.0021 | - |
| 4.1166 | 4800 | 0.0014 | - |
| 4.1595 | 4850 | 0.0006 | - |
| 4.2024 | 4900 | 0.0008 | - |
| 4.2453 | 4950 | 0.0006 | - |
| 4.2882 | 5000 | 0.0005 | - |
| 4.3310 | 5050 | 0.0003 | - |
| 4.3739 | 5100 | 0.0003 | - |
| 4.4168 | 5150 | 0.0002 | - |
| 4.4597 | 5200 | 0.0002 | - |
| 4.5026 | 5250 | 0.0002 | - |
| 4.5455 | 5300 | 0.0002 | - |
| 4.5883 | 5350 | 0.0002 | - |
| 4.6312 | 5400 | 0.0002 | - |
| 4.6741 | 5450 | 0.0003 | - |
| 4.7170 | 5500 | 0.0001 | - |
| 4.7599 | 5550 | 0.0001 | - |
| 4.8027 | 5600 | 0.0001 | - |
| 4.8456 | 5650 | 0.0001 | - |
| 4.8885 | 5700 | 0.0001 | - |
| 4.9314 | 5750 | 0.0001 | - |
| 4.9743 | 5800 | 0.0001 | - |
| 5.0172 | 5850 | 0.0001 | - |
| 5.0600 | 5900 | 0.0001 | - |
| 5.1029 | 5950 | 0.0001 | - |
| 5.1458 | 6000 | 0.0001 | - |
| 5.1887 | 6050 | 0.0001 | - |
| 5.2316 | 6100 | 0.0001 | - |
| 5.2744 | 6150 | 0.0001 | - |
| 5.3173 | 6200 | 0.0002 | - |
| 5.3602 | 6250 | 0.0001 | - |
| 5.4031 | 6300 | 0.0001 | - |
| 5.4460 | 6350 | 0.0001 | - |
| 5.4889 | 6400 | 0.0 | - |
| 5.5317 | 6450 | 0.0 | - |
| 5.5746 | 6500 | 0.0001 | - |
| 5.6175 | 6550 | 0.0 | - |
| 5.6604 | 6600 | 0.0001 | - |
| 5.7033 | 6650 | 0.0 | - |
| 5.7461 | 6700 | 0.0001 | - |
| 5.7890 | 6750 | 0.0 | - |
| 5.8319 | 6800 | 0.0 | - |
| 5.8748 | 6850 | 0.0001 | - |
| 5.9177 | 6900 | 0.0 | - |
| 5.9605 | 6950 | 0.0001 | - |
| 6.0034 | 7000 | 0.0023 | - |
| 6.0463 | 7050 | 0.0094 | - |
| 6.0892 | 7100 | 0.0089 | - |
| 6.1321 | 7150 | 0.0075 | - |
| 6.1750 | 7200 | 0.0033 | - |
| 6.2178 | 7250 | 0.0026 | - |
| 6.2607 | 7300 | 0.0023 | - |
| 6.3036 | 7350 | 0.0034 | - |
| 6.3465 | 7400 | 0.0013 | - |
| 6.3894 | 7450 | 0.0008 | - |
| 6.4322 | 7500 | 0.0004 | - |
| 6.4751 | 7550 | 0.0002 | - |
| 6.5180 | 7600 | 0.0001 | - |
| 6.5609 | 7650 | 0.0001 | - |
| 6.6038 | 7700 | 0.0001 | - |
| 6.6467 | 7750 | 0.0002 | - |
| 6.6895 | 7800 | 0.0001 | - |
| 6.7324 | 7850 | 0.0002 | - |
| 6.7753 | 7900 | 0.0001 | - |
| 6.8182 | 7950 | 0.0 | - |
| 6.8611 | 8000 | 0.0021 | - |
| 6.9039 | 8050 | 0.0003 | - |
| 6.9468 | 8100 | 0.0011 | - |
| 6.9897 | 8150 | 0.0013 | - |
| 7.0326 | 8200 | 0.0001 | - |
| 7.0755 | 8250 | 0.0001 | - |
| 7.1184 | 8300 | 0.0 | - |
| 7.1612 | 8350 | 0.0001 | - |
| 7.2041 | 8400 | 0.0002 | - |
| 7.2470 | 8450 | 0.0015 | - |
| 7.2899 | 8500 | 0.0008 | - |
| 7.3328 | 8550 | 0.0001 | - |
| 7.3756 | 8600 | 0.0 | - |
| 7.4185 | 8650 | 0.0 | - |
| 7.4614 | 8700 | 0.0 | - |
| 7.5043 | 8750 | 0.0 | - |
| 7.5472 | 8800 | 0.0001 | - |
| 7.5901 | 8850 | 0.0 | - |
| 7.6329 | 8900 | 0.0001 | - |
| 7.6758 | 8950 | 0.0001 | - |
| 7.7187 | 9000 | 0.0 | - |
| 7.7616 | 9050 | 0.0001 | - |
| 7.8045 | 9100 | 0.0003 | - |
| 7.8473 | 9150 | 0.0002 | - |
| 7.8902 | 9200 | 0.0 | - |
| 7.9331 | 9250 | 0.0 | - |
| 7.9760 | 9300 | 0.0 | - |
| 8.0189 | 9350 | 0.0 | - |
| 8.0617 | 9400 | 0.0 | - |
| 8.1046 | 9450 | 0.0005 | - |
| 8.1475 | 9500 | 0.0092 | - |
| 8.1904 | 9550 | 0.009 | - |
| 8.2333 | 9600 | 0.0042 | - |
| 8.2762 | 9650 | 0.0011 | - |
| 8.3190 | 9700 | 0.0001 | - |
| 8.3619 | 9750 | 0.0003 | - |
| 8.4048 | 9800 | 0.0001 | - |
| 8.4477 | 9850 | 0.0003 | - |
| 8.4906 | 9900 | 0.0 | - |
| 8.5334 | 9950 | 0.0 | - |
| 8.5763 | 10000 | 0.0002 | - |
| 8.6192 | 10050 | 0.0003 | - |
| 8.6621 | 10100 | 0.0 | - |
| 8.7050 | 10150 | 0.0 | - |
| 8.7479 | 10200 | 0.0 | - |
| 8.7907 | 10250 | 0.0 | - |
| 8.8336 | 10300 | 0.0 | - |
| 8.8765 | 10350 | 0.0 | - |
| 8.9194 | 10400 | 0.0 | - |
| 8.9623 | 10450 | 0.0 | - |
| 9.0051 | 10500 | 0.0 | - |
| 9.0480 | 10550 | 0.0 | - |
| 9.0909 | 10600 | 0.0 | - |
| 9.1338 | 10650 | 0.0 | - |
| 9.1767 | 10700 | 0.0 | - |
| 9.2196 | 10750 | 0.0 | - |
| 9.2624 | 10800 | 0.0 | - |
| 9.3053 | 10850 | 0.0018 | - |
| 9.3482 | 10900 | 0.0016 | - |
| 9.3911 | 10950 | 0.0012 | - |
| 9.4340 | 11000 | 0.0007 | - |
| 9.4768 | 11050 | 0.0075 | - |
| 9.5197 | 11100 | 0.0044 | - |
| 9.5626 | 11150 | 0.004 | - |
| 9.6055 | 11200 | 0.004 | - |
| 9.6484 | 11250 | 0.0019 | - |
| 9.6913 | 11300 | 0.0015 | - |
| 9.7341 | 11350 | 0.0017 | - |
| 9.7770 | 11400 | 0.0011 | - |
| 9.8199 | 11450 | 0.0003 | - |
| 9.8628 | 11500 | 0.0001 | - |
| 9.9057 | 11550 | 0.0001 | - |
| 9.9485 | 11600 | 0.0001 | - |
| 9.9914 | 11650 | 0.0 | - |
| 10.0343 | 11700 | 0.0 | - |
| 10.0772 | 11750 | 0.0 | - |
| 10.1201 | 11800 | 0.0 | - |
| 10.1630 | 11850 | 0.0 | - |
| 10.2058 | 11900 | 0.0 | - |
| 10.2487 | 11950 | 0.0 | - |
| 10.2916 | 12000 | 0.0 | - |
| 10.3345 | 12050 | 0.0 | - |
| 10.3774 | 12100 | 0.0 | - |
| 10.4202 | 12150 | 0.0 | - |
| 10.4631 | 12200 | 0.0 | - |
| 10.5060 | 12250 | 0.0 | - |
| 10.5489 | 12300 | 0.0 | - |
| 10.5918 | 12350 | 0.0 | - |
| 10.6346 | 12400 | 0.0 | - |
| 10.6775 | 12450 | 0.0 | - |
| 10.7204 | 12500 | 0.0 | - |
| 10.7633 | 12550 | 0.0 | - |
| 10.8062 | 12600 | 0.0 | - |
| 10.8491 | 12650 | 0.0 | - |
| 10.8919 | 12700 | 0.0 | - |
| 10.9348 | 12750 | 0.0003 | - |
| 10.9777 | 12800 | 0.0014 | - |
| 11.0206 | 12850 | 0.0004 | - |
| 11.0635 | 12900 | 0.0001 | - |
| 11.1063 | 12950 | 0.0 | - |
| 11.1492 | 13000 | 0.0 | - |
| 11.1921 | 13050 | 0.0 | - |
| 11.2350 | 13100 | 0.0 | - |
| 11.2779 | 13150 | 0.0 | - |
| 11.3208 | 13200 | 0.0 | - |
| 11.3636 | 13250 | 0.0 | - |
| 11.4065 | 13300 | 0.0 | - |
| 11.4494 | 13350 | 0.0 | - |
| 11.4923 | 13400 | 0.0 | - |
| 11.5352 | 13450 | 0.0 | - |
| 11.5780 | 13500 | 0.0 | - |
| 11.6209 | 13550 | 0.0 | - |
| 11.6638 | 13600 | 0.0 | - |
| 11.7067 | 13650 | 0.0 | - |
| 11.7496 | 13700 | 0.0 | - |
| 11.7925 | 13750 | 0.0 | - |
| 11.8353 | 13800 | 0.0 | - |
| 11.8782 | 13850 | 0.0 | - |
| 11.9211 | 13900 | 0.0 | - |
| 11.9640 | 13950 | 0.0 | - |
| 12.0069 | 14000 | 0.0 | - |
| 12.0497 | 14050 | 0.0 | - |
| 12.0926 | 14100 | 0.0 | - |
| 12.1355 | 14150 | 0.0 | - |
| 12.1784 | 14200 | 0.0 | - |
| 12.2213 | 14250 | 0.0 | - |
| 12.2642 | 14300 | 0.0 | - |
| 12.3070 | 14350 | 0.0 | - |
| 12.3499 | 14400 | 0.0 | - |
| 12.3928 | 14450 | 0.0 | - |
| 12.4357 | 14500 | 0.0 | - |
| 12.4786 | 14550 | 0.0 | - |
| 12.5214 | 14600 | 0.0 | - |
| 12.5643 | 14650 | 0.0 | - |
| 12.6072 | 14700 | 0.0 | - |
| 12.6501 | 14750 | 0.0 | - |
| 12.6930 | 14800 | 0.0 | - |
| 12.7358 | 14850 | 0.0 | - |
| 12.7787 | 14900 | 0.0 | - |
| 12.8216 | 14950 | 0.0 | - |
| 12.8645 | 15000 | 0.0 | - |
| 12.9074 | 15050 | 0.0 | - |
| 12.9503 | 15100 | 0.0001 | - |
| 12.9931 | 15150 | 0.0068 | - |
| 13.0360 | 15200 | 0.0085 | - |
| 13.0789 | 15250 | 0.007 | - |
| 13.1218 | 15300 | 0.0059 | - |
| 13.1647 | 15350 | 0.0036 | - |
| 13.2075 | 15400 | 0.0041 | - |
| 13.2504 | 15450 | 0.0054 | - |
| 13.2933 | 15500 | 0.007 | - |
| 13.3362 | 15550 | 0.0047 | - |
| 13.3791 | 15600 | 0.0041 | - |
| 13.4220 | 15650 | 0.0019 | - |
| 13.4648 | 15700 | 0.002 | - |
| 13.5077 | 15750 | 0.0004 | - |
| 13.5506 | 15800 | 0.0001 | - |
| 13.5935 | 15850 | 0.0 | - |
| 13.6364 | 15900 | 0.0001 | - |
| 13.6792 | 15950 | 0.0 | - |
| 13.7221 | 16000 | 0.0002 | - |
| 13.7650 | 16050 | 0.0 | - |
| 13.8079 | 16100 | 0.0 | - |
| 13.8508 | 16150 | 0.0 | - |
| 13.8937 | 16200 | 0.0 | - |
| 13.9365 | 16250 | 0.0 | - |
| 13.9794 | 16300 | 0.0 | - |
| 14.0223 | 16350 | 0.0 | - |
| 14.0652 | 16400 | 0.0 | - |
| 14.1081 | 16450 | 0.0 | - |
| 14.1509 | 16500 | 0.0 | - |
| 14.1938 | 16550 | 0.0 | - |
| 14.2367 | 16600 | 0.0 | - |
| 14.2796 | 16650 | 0.0 | - |
| 14.3225 | 16700 | 0.0 | - |
| 14.3654 | 16750 | 0.0 | - |
| 14.4082 | 16800 | 0.0 | - |
| 14.4511 | 16850 | 0.0 | - |
| 14.4940 | 16900 | 0.0 | - |
| 14.5369 | 16950 | 0.0 | - |
| 14.5798 | 17000 | 0.0 | - |
| 14.6226 | 17050 | 0.0 | - |
| 14.6655 | 17100 | 0.0 | - |
| 14.7084 | 17150 | 0.0 | - |
| 14.7513 | 17200 | 0.0 | - |
| 14.7942 | 17250 | 0.0 | - |
| 14.8370 | 17300 | 0.0 | - |
| 14.8799 | 17350 | 0.0 | - |
| 14.9228 | 17400 | 0.0 | - |
| 14.9657 | 17450 | 0.0 | - |
| 15.0086 | 17500 | 0.0 | - |
| 15.0515 | 17550 | 0.0 | - |
| 15.0943 | 17600 | 0.0 | - |
| 15.1372 | 17650 | 0.0 | - |
| 15.1801 | 17700 | 0.0 | - |
| 15.2230 | 17750 | 0.0 | - |
| 15.2659 | 17800 | 0.0 | - |
| 15.3087 | 17850 | 0.0 | - |
| 15.3516 | 17900 | 0.0 | - |
| 15.3945 | 17950 | 0.0 | - |
| 15.4374 | 18000 | 0.0 | - |
| 15.4803 | 18050 | 0.0 | - |
| 15.5232 | 18100 | 0.0 | - |
| 15.5660 | 18150 | 0.0 | - |
| 15.6089 | 18200 | 0.0004 | - |
| 15.6518 | 18250 | 0.002 | - |
| 15.6947 | 18300 | 0.0015 | - |
| 15.7376 | 18350 | 0.0016 | - |
| 15.7804 | 18400 | 0.002 | - |
| 15.8233 | 18450 | 0.0009 | - |
| 15.8662 | 18500 | 0.0007 | - |
| 15.9091 | 18550 | 0.0011 | - |
| 15.9520 | 18600 | 0.0004 | - |
| 15.9949 | 18650 | 0.0004 | - |
| 16.0377 | 18700 | 0.0001 | - |
| 16.0806 | 18750 | 0.0 | - |
| 16.1235 | 18800 | 0.0 | - |
| 16.1664 | 18850 | 0.0002 | - |
| 16.2093 | 18900 | 0.0 | - |
| 16.2521 | 18950 | 0.0 | - |
| 16.2950 | 19000 | 0.0 | - |
| 16.3379 | 19050 | 0.0 | - |
| 16.3808 | 19100 | 0.0 | - |
| 16.4237 | 19150 | 0.0 | - |
| 16.4666 | 19200 | 0.0 | - |
| 16.5094 | 19250 | 0.0 | - |
| 16.5523 | 19300 | 0.0 | - |
| 16.5952 | 19350 | 0.0 | - |
| 16.6381 | 19400 | 0.0 | - |
| 16.6810 | 19450 | 0.0 | - |
| 16.7238 | 19500 | 0.0 | - |
| 16.7667 | 19550 | 0.0001 | - |
| 16.8096 | 19600 | 0.0001 | - |
| 16.8525 | 19650 | 0.0007 | - |
| 16.8954 | 19700 | 0.0002 | - |
| 16.9383 | 19750 | 0.0003 | - |
| 16.9811 | 19800 | 0.0 | - |
| 17.0240 | 19850 | 0.0 | - |
| 17.0669 | 19900 | 0.0 | - |
| 17.1098 | 19950 | 0.0 | - |
| 17.1527 | 20000 | 0.0 | - |
| 17.1955 | 20050 | 0.0 | - |
| 17.2384 | 20100 | 0.0 | - |
| 17.2813 | 20150 | 0.0 | - |
| 17.3242 | 20200 | 0.0 | - |
| 17.3671 | 20250 | 0.0 | - |
| 17.4099 | 20300 | 0.0 | - |
| 17.4528 | 20350 | 0.0 | - |
| 17.4957 | 20400 | 0.0 | - |
| 17.5386 | 20450 | 0.0 | - |
| 17.5815 | 20500 | 0.0 | - |
| 17.6244 | 20550 | 0.0 | - |
| 17.6672 | 20600 | 0.0 | - |
| 17.7101 | 20650 | 0.0 | - |
| 17.7530 | 20700 | 0.0 | - |
| 17.7959 | 20750 | 0.0 | - |
| 17.8388 | 20800 | 0.0 | - |
| 17.8816 | 20850 | 0.0 | - |
| 17.9245 | 20900 | 0.0 | - |
| 17.9674 | 20950 | 0.0 | - |
| 18.0103 | 21000 | 0.0 | - |
| 18.0532 | 21050 | 0.0 | - |
| 18.0961 | 21100 | 0.0 | - |
| 18.1389 | 21150 | 0.0 | - |
| 18.1818 | 21200 | 0.0 | - |
| 18.2247 | 21250 | 0.0 | - |
| 18.2676 | 21300 | 0.0 | - |
| 18.3105 | 21350 | 0.0 | - |
| 18.3533 | 21400 | 0.0 | - |
| 18.3962 | 21450 | 0.0 | - |
| 18.4391 | 21500 | 0.0 | - |
| 18.4820 | 21550 | 0.0 | - |
| 18.5249 | 21600 | 0.0 | - |
| 18.5678 | 21650 | 0.0 | - |
| 18.6106 | 21700 | 0.0 | - |
| 18.6535 | 21750 | 0.0 | - |
| 18.6964 | 21800 | 0.0 | - |
| 18.7393 | 21850 | 0.0 | - |
| 18.7822 | 21900 | 0.0 | - |
| 18.8250 | 21950 | 0.0 | - |
| 18.8679 | 22000 | 0.0 | - |
| 18.9108 | 22050 | 0.0 | - |
| 18.9537 | 22100 | 0.0 | - |
| 18.9966 | 22150 | 0.0 | - |
| 19.0395 | 22200 | 0.0 | - |
| 19.0823 | 22250 | 0.0 | - |
| 19.1252 | 22300 | 0.0 | - |
| 19.1681 | 22350 | 0.0 | - |
| 19.2110 | 22400 | 0.0 | - |
| 19.2539 | 22450 | 0.0 | - |
| 19.2967 | 22500 | 0.0 | - |
| 19.3396 | 22550 | 0.0 | - |
| 19.3825 | 22600 | 0.0 | - |
| 19.4254 | 22650 | 0.0 | - |
| 19.4683 | 22700 | 0.0 | - |
| 19.5111 | 22750 | 0.0 | - |
| 19.5540 | 22800 | 0.0 | - |
| 19.5969 | 22850 | 0.0 | - |
| 19.6398 | 22900 | 0.0 | - |
| 19.6827 | 22950 | 0.0 | - |
| 19.7256 | 23000 | 0.0 | - |
| 19.7684 | 23050 | 0.0 | - |
| 19.8113 | 23100 | 0.0 | - |
| 19.8542 | 23150 | 0.0 | - |
| 19.8971 | 23200 | 0.0 | - |
| 19.9400 | 23250 | 0.0 | - |
| 19.9828 | 23300 | 0.0 | - |
| 20.0257 | 23350 | 0.0 | - |
| 20.0686 | 23400 | 0.0 | - |
| 20.1115 | 23450 | 0.0 | - |
| 20.1544 | 23500 | 0.0 | - |
| 20.1973 | 23550 | 0.0 | - |
| 20.2401 | 23600 | 0.0 | - |
| 20.2830 | 23650 | 0.0 | - |
| 20.3259 | 23700 | 0.0 | - |
| 20.3688 | 23750 | 0.0 | - |
| 20.4117 | 23800 | 0.0 | - |
| 20.4545 | 23850 | 0.0 | - |
| 20.4974 | 23900 | 0.0 | - |
| 20.5403 | 23950 | 0.0 | - |
| 20.5832 | 24000 | 0.0 | - |
| 20.6261 | 24050 | 0.0 | - |
| 20.6690 | 24100 | 0.0 | - |
| 20.7118 | 24150 | 0.0 | - |
| 20.7547 | 24200 | 0.0 | - |
| 20.7976 | 24250 | 0.0 | - |
| 20.8405 | 24300 | 0.0 | - |
| 20.8834 | 24350 | 0.0 | - |
| 20.9262 | 24400 | 0.0 | - |
| 20.9691 | 24450 | 0.0 | - |
| 21.0120 | 24500 | 0.0 | - |
| 21.0549 | 24550 | 0.0 | - |
| 21.0978 | 24600 | 0.0 | - |
| 21.1407 | 24650 | 0.0 | - |
| 21.1835 | 24700 | 0.0 | - |
| 21.2264 | 24750 | 0.0 | - |
| 21.2693 | 24800 | 0.0 | - |
| 21.3122 | 24850 | 0.0 | - |
| 21.3551 | 24900 | 0.0 | - |
| 21.3979 | 24950 | 0.0 | - |
| 21.4408 | 25000 | 0.0 | - |
| 21.4837 | 25050 | 0.0 | - |
| 21.5266 | 25100 | 0.0 | - |
| 21.5695 | 25150 | 0.0 | - |
| 21.6123 | 25200 | 0.0 | - |
| 21.6552 | 25250 | 0.0 | - |
| 21.6981 | 25300 | 0.0 | - |
| 21.7410 | 25350 | 0.0005 | - |
| 21.7839 | 25400 | 0.0022 | - |
| 21.8268 | 25450 | 0.0021 | - |
| 21.8696 | 25500 | 0.0001 | - |
| 21.9125 | 25550 | 0.0 | - |
| 21.9554 | 25600 | 0.0 | - |
| 21.9983 | 25650 | 0.0 | - |
| 22.0412 | 25700 | 0.0 | - |
| 22.0840 | 25750 | 0.0 | - |
| 22.1269 | 25800 | 0.0 | - |
| 22.1698 | 25850 | 0.0 | - |
| 22.2127 | 25900 | 0.0 | - |
| 22.2556 | 25950 | 0.0 | - |
| 22.2985 | 26000 | 0.0 | - |
| 22.3413 | 26050 | 0.0 | - |
| 22.3842 | 26100 | 0.0 | - |
| 22.4271 | 26150 | 0.0 | - |
| 22.4700 | 26200 | 0.0 | - |
| 22.5129 | 26250 | 0.0 | - |
| 22.5557 | 26300 | 0.0 | - |
| 22.5986 | 26350 | 0.0 | - |
| 22.6415 | 26400 | 0.0 | - |
| 22.6844 | 26450 | 0.0 | - |
| 22.7273 | 26500 | 0.0 | - |
| 22.7702 | 26550 | 0.0 | - |
| 22.8130 | 26600 | 0.0 | - |
| 22.8559 | 26650 | 0.0 | - |
| 22.8988 | 26700 | 0.0 | - |
| 22.9417 | 26750 | 0.0 | - |
| 22.9846 | 26800 | 0.0 | - |
| 23.0274 | 26850 | 0.0 | - |
| 23.0703 | 26900 | 0.0 | - |
| 23.1132 | 26950 | 0.0 | - |
| 23.1561 | 27000 | 0.0 | - |
| 23.1990 | 27050 | 0.0 | - |
| 23.2419 | 27100 | 0.0 | - |
| 23.2847 | 27150 | 0.0 | - |
| 23.3276 | 27200 | 0.0 | - |
| 23.3705 | 27250 | 0.0 | - |
| 23.4134 | 27300 | 0.0 | - |
| 23.4563 | 27350 | 0.0 | - |
| 23.4991 | 27400 | 0.0 | - |
| 23.5420 | 27450 | 0.0 | - |
| 23.5849 | 27500 | 0.0 | - |
| 23.6278 | 27550 | 0.0 | - |
| 23.6707 | 27600 | 0.0 | - |
| 23.7136 | 27650 | 0.0 | - |
| 23.7564 | 27700 | 0.0 | - |
| 23.7993 | 27750 | 0.0 | - |
| 23.8422 | 27800 | 0.0 | - |
| 23.8851 | 27850 | 0.0 | - |
| 23.9280 | 27900 | 0.0 | - |
| 23.9708 | 27950 | 0.0 | - |
| 24.0137 | 28000 | 0.0 | - |
| 24.0566 | 28050 | 0.0 | - |
| 24.0995 | 28100 | 0.0 | - |
| 24.1424 | 28150 | 0.0 | - |
| 24.1852 | 28200 | 0.0 | - |
| 24.2281 | 28250 | 0.0 | - |
| 24.2710 | 28300 | 0.0 | - |
| 24.3139 | 28350 | 0.0 | - |
| 24.3568 | 28400 | 0.0 | - |
| 24.3997 | 28450 | 0.0 | - |
| 24.4425 | 28500 | 0.0 | - |
| 24.4854 | 28550 | 0.0 | - |
| 24.5283 | 28600 | 0.0 | - |
| 24.5712 | 28650 | 0.0 | - |
| 24.6141 | 28700 | 0.0 | - |
| 24.6569 | 28750 | 0.0 | - |
| 24.6998 | 28800 | 0.0 | - |
| 24.7427 | 28850 | 0.0 | - |
| 24.7856 | 28900 | 0.0 | - |
| 24.8285 | 28950 | 0.0 | - |
| 24.8714 | 29000 | 0.0 | - |
| 24.9142 | 29050 | 0.0 | - |
| 24.9571 | 29100 | 0.0 | - |
| 25.0 | 29150 | 0.0 | - |
| 25.0429 | 29200 | 0.0 | - |
| 25.0858 | 29250 | 0.0 | - |
| 25.1286 | 29300 | 0.0 | - |
| 25.1715 | 29350 | 0.0 | - |
| 25.2144 | 29400 | 0.0 | - |
| 25.2573 | 29450 | 0.0 | - |
| 25.3002 | 29500 | 0.0 | - |
| 25.3431 | 29550 | 0.0 | - |
| 25.3859 | 29600 | 0.0 | - |
| 25.4288 | 29650 | 0.0 | - |
| 25.4717 | 29700 | 0.0 | - |
| 25.5146 | 29750 | 0.0 | - |
| 25.5575 | 29800 | 0.0 | - |
| 25.6003 | 29850 | 0.0 | - |
| 25.6432 | 29900 | 0.0 | - |
| 25.6861 | 29950 | 0.0 | - |
| 25.7290 | 30000 | 0.0 | - |
| 25.7719 | 30050 | 0.0 | - |
| 25.8148 | 30100 | 0.0 | - |
| 25.8576 | 30150 | 0.0 | - |
| 25.9005 | 30200 | 0.0 | - |
| 25.9434 | 30250 | 0.0 | - |
| 25.9863 | 30300 | 0.0 | - |
| 26.0292 | 30350 | 0.0 | - |
| 26.0720 | 30400 | 0.0 | - |
| 26.1149 | 30450 | 0.0 | - |
| 26.1578 | 30500 | 0.0 | - |
| 26.2007 | 30550 | 0.0 | - |
| 26.2436 | 30600 | 0.0 | - |
| 26.2864 | 30650 | 0.0 | - |
| 26.3293 | 30700 | 0.0 | - |
| 26.3722 | 30750 | 0.0 | - |
| 26.4151 | 30800 | 0.0 | - |
| 26.4580 | 30850 | 0.0 | - |
| 26.5009 | 30900 | 0.0 | - |
| 26.5437 | 30950 | 0.0 | - |
| 26.5866 | 31000 | 0.0 | - |
| 26.6295 | 31050 | 0.0 | - |
| 26.6724 | 31100 | 0.0 | - |
| 26.7153 | 31150 | 0.0 | - |
| 26.7581 | 31200 | 0.0 | - |
| 26.8010 | 31250 | 0.0 | - |
| 26.8439 | 31300 | 0.0 | - |
| 26.8868 | 31350 | 0.0 | - |
| 26.9297 | 31400 | 0.0 | - |
| 26.9726 | 31450 | 0.0 | - |
| 27.0154 | 31500 | 0.0 | - |
| 27.0583 | 31550 | 0.0 | - |
| 27.1012 | 31600 | 0.0 | - |
| 27.1441 | 31650 | 0.0 | - |
| 27.1870 | 31700 | 0.0 | - |
| 27.2298 | 31750 | 0.0 | - |
| 27.2727 | 31800 | 0.0 | - |
| 27.3156 | 31850 | 0.0 | - |
| 27.3585 | 31900 | 0.0 | - |
| 27.4014 | 31950 | 0.0 | - |
| 27.4443 | 32000 | 0.0 | - |
| 27.4871 | 32050 | 0.0 | - |
| 27.5300 | 32100 | 0.0 | - |
| 27.5729 | 32150 | 0.0 | - |
| 27.6158 | 32200 | 0.0 | - |
| 27.6587 | 32250 | 0.0 | - |
| 27.7015 | 32300 | 0.0 | - |
| 27.7444 | 32350 | 0.0 | - |
| 27.7873 | 32400 | 0.0 | - |
| 27.8302 | 32450 | 0.0 | - |
| 27.8731 | 32500 | 0.0 | - |
| 27.9160 | 32550 | 0.0 | - |
| 27.9588 | 32600 | 0.0 | - |
| 28.0017 | 32650 | 0.0 | - |
| 28.0446 | 32700 | 0.0 | - |
| 28.0875 | 32750 | 0.0 | - |
| 28.1304 | 32800 | 0.0 | - |
| 28.1732 | 32850 | 0.0 | - |
| 28.2161 | 32900 | 0.0 | - |
| 28.2590 | 32950 | 0.0 | - |
| 28.3019 | 33000 | 0.0 | - |
| 28.3448 | 33050 | 0.0 | - |
| 28.3877 | 33100 | 0.0 | - |
| 28.4305 | 33150 | 0.0 | - |
| 28.4734 | 33200 | 0.0 | - |
| 28.5163 | 33250 | 0.0 | - |
| 28.5592 | 33300 | 0.0 | - |
| 28.6021 | 33350 | 0.0 | - |
| 28.6449 | 33400 | 0.0 | - |
| 28.6878 | 33450 | 0.0 | - |
| 28.7307 | 33500 | 0.0 | - |
| 28.7736 | 33550 | 0.0 | - |
| 28.8165 | 33600 | 0.0 | - |
| 28.8593 | 33650 | 0.0 | - |
| 28.9022 | 33700 | 0.0 | - |
| 28.9451 | 33750 | 0.0 | - |
| 28.9880 | 33800 | 0.0 | - |
| 29.0309 | 33850 | 0.0 | - |
| 29.0738 | 33900 | 0.0 | - |
| 29.1166 | 33950 | 0.0 | - |
| 29.1595 | 34000 | 0.0 | - |
| 29.2024 | 34050 | 0.0 | - |
| 29.2453 | 34100 | 0.0 | - |
| 29.2882 | 34150 | 0.0 | - |
| 29.3310 | 34200 | 0.0 | - |
| 29.3739 | 34250 | 0.0 | - |
| 29.4168 | 34300 | 0.0 | - |
| 29.4597 | 34350 | 0.0 | - |
| 29.5026 | 34400 | 0.0 | - |
| 29.5455 | 34450 | 0.0 | - |
| 29.5883 | 34500 | 0.0 | - |
| 29.6312 | 34550 | 0.0 | - |
| 29.6741 | 34600 | 0.0 | - |
| 29.7170 | 34650 | 0.0 | - |
| 29.7599 | 34700 | 0.0 | - |
| 29.8027 | 34750 | 0.0 | - |
| 29.8456 | 34800 | 0.0 | - |
| 29.8885 | 34850 | 0.0 | - |
| 29.9314 | 34900 | 0.0 | - |
| 29.9743 | 34950 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```