--- base_model: mini1013/master_domain library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: '[당일출고/백화점정품] 나스 래디언트 크리미 컨실러 6ml / 바닐라 바닐라 에스엠(SM)월드' - text: '[갤러리아] [수분 피팅 프라이머] 프로텍션 SPF 50 PA+++(한화갤러리아㈜ 광교점) 프로텍션 SPF 50 PA+++ 한화갤러리아(주)' - text: '[빌리프] [24MS]시카 밤 쿠션 핑크 베이지 기본 주식회사 인터파크커머스' - text: (백화) 오휘 24RN 얼티밋 커버 메쉬 쿠션 1호 383007 옵션없음 펀펀몰 - text: 나스 래디언스 프라이머 30ml(SPF35) 옵션없음 블루밍컴퍼니 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.7155172413793104 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 7 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0.0 | | | 3.0 | | | 1.0 | | | 5.0 | | | 4.0 | | | 6.0 | | | 2.0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.7155 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_bt4_test") # Run inference preds = model("나스 래디언스 프라이머 30ml(SPF35) 옵션없음 블루밍컴퍼니") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 5 | 9.7872 | 19 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 19 | | 1.0 | 21 | | 2.0 | 10 | | 3.0 | 19 | | 4.0 | 28 | | 5.0 | 23 | | 6.0 | 21 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (50, 50) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 60 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0588 | 1 | 0.499 | - | | 2.9412 | 50 | 0.3295 | - | | 5.8824 | 100 | 0.0469 | - | | 8.8235 | 150 | 0.0217 | - | | 11.7647 | 200 | 0.0013 | - | | 14.7059 | 250 | 0.0001 | - | | 17.6471 | 300 | 0.0001 | - | | 20.5882 | 350 | 0.0 | - | | 23.5294 | 400 | 0.0 | - | | 26.4706 | 450 | 0.0 | - | | 29.4118 | 500 | 0.0 | - | | 32.3529 | 550 | 0.0 | - | | 35.2941 | 600 | 0.0 | - | | 38.2353 | 650 | 0.0 | - | | 41.1765 | 700 | 0.0 | - | | 44.1176 | 750 | 0.0 | - | | 47.0588 | 800 | 0.0 | - | | 50.0 | 850 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```