--- base_model: mini1013/master_domain library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: '[당일출고] 한율 자연을 닮은 립밤 4g - 3호 옵션없음 제이에이치컴퍼니' - text: 릴리바이레드 러브빔 글로우 베일 3.2g 02 홀리빔 × 1개 옵션없음 원라이브브랜드 - text: 에뛰드 컬픽스 마스카라 8g 그레이 브라운 버프샵 - text: '[입생로랑] [리필] NEW 루쥬 쀠르 꾸뛰르 NM 뉘 뮤즈(리필)​ 엘오케이 (유)' - text: 우드버리 하드텍스처 아이브로우 펜슬 4g Timber Wolf 1개 1022244 옵션없음 배스테인 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.7551652892561983 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 13 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1.0 | | | 7.0 | | | 4.0 | | | 5.0 | | | 2.0 | | | 12.0 | | | 0.0 | | | 9.0 | | | 8.0 | | | 3.0 | | | 11.0 | | | 6.0 | | | 10.0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.7552 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_bt6_test") # Run inference preds = model("에뛰드 컬픽스 마스카라 8g 그레이 브라운 버프샵") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 4 | 9.3296 | 20 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 16 | | 1.0 | 18 | | 2.0 | 19 | | 3.0 | 24 | | 4.0 | 19 | | 5.0 | 20 | | 6.0 | 21 | | 7.0 | 15 | | 8.0 | 21 | | 9.0 | 22 | | 10.0 | 31 | | 11.0 | 22 | | 12.0 | 19 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (50, 50) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 60 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0312 | 1 | 0.4833 | - | | 1.5625 | 50 | 0.3686 | - | | 3.125 | 100 | 0.0991 | - | | 4.6875 | 150 | 0.0361 | - | | 6.25 | 200 | 0.0224 | - | | 7.8125 | 250 | 0.0132 | - | | 9.375 | 300 | 0.0102 | - | | 10.9375 | 350 | 0.0069 | - | | 12.5 | 400 | 0.0012 | - | | 14.0625 | 450 | 0.0002 | - | | 15.625 | 500 | 0.0002 | - | | 17.1875 | 550 | 0.0002 | - | | 18.75 | 600 | 0.0001 | - | | 20.3125 | 650 | 0.0001 | - | | 21.875 | 700 | 0.0001 | - | | 23.4375 | 750 | 0.0001 | - | | 25.0 | 800 | 0.0001 | - | | 26.5625 | 850 | 0.0001 | - | | 28.125 | 900 | 0.0001 | - | | 29.6875 | 950 | 0.0001 | - | | 31.25 | 1000 | 0.0001 | - | | 32.8125 | 1050 | 0.0001 | - | | 34.375 | 1100 | 0.0001 | - | | 35.9375 | 1150 | 0.0001 | - | | 37.5 | 1200 | 0.0001 | - | | 39.0625 | 1250 | 0.0001 | - | | 40.625 | 1300 | 0.0001 | - | | 42.1875 | 1350 | 0.0001 | - | | 43.75 | 1400 | 0.0001 | - | | 45.3125 | 1450 | 0.0001 | - | | 46.875 | 1500 | 0.0001 | - | | 48.4375 | 1550 | 0.0001 | - | | 50.0 | 1600 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```