--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 파인트리 홀그레인 머스타드 850g (주)우주식품디씨오피 - text: 오뚜기 오쉐프 마요네스 3.2kg 이금기 팬더굴소스 2kg 디에치커머스 주식회사 - text: 샘표 샤브샤브 담백한 육수 200g 외 10종 / 샤브육수소스 10. 티아시아 피넛소스 275g 주식회사 통통마트 - text: 해천 시그니처 굴소스 캔 2.27kg 대륙 깊은맛 주식회사 다솜식자재유통 - text: 청정원 토마토와 생크림 로제 스파게티소스 2kg 호호푸드 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.9092549161104095 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 13 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 5.0 | | | 11.0 | | | 2.0 | | | 6.0 | | | 0.0 | | | 4.0 | | | 8.0 | | | 3.0 | | | 10.0 | | | 1.0 | | | 7.0 | | | 9.0 | | | 12.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.9093 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_fd10") # Run inference preds = model("파인트리 홀그레인 머스타드 850g (주)우주식품디씨오피") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 8.5284 | 19 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | | 9.0 | 16 | | 10.0 | 50 | | 11.0 | 50 | | 12.0 | 15 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0110 | 1 | 0.4378 | - | | 0.5495 | 50 | 0.381 | - | | 1.0989 | 100 | 0.1591 | - | | 1.6484 | 150 | 0.0501 | - | | 2.1978 | 200 | 0.0362 | - | | 2.7473 | 250 | 0.0292 | - | | 3.2967 | 300 | 0.0296 | - | | 3.8462 | 350 | 0.0276 | - | | 4.3956 | 400 | 0.0177 | - | | 4.9451 | 450 | 0.007 | - | | 5.4945 | 500 | 0.014 | - | | 6.0440 | 550 | 0.0012 | - | | 6.5934 | 600 | 0.0001 | - | | 7.1429 | 650 | 0.0001 | - | | 7.6923 | 700 | 0.0001 | - | | 8.2418 | 750 | 0.0001 | - | | 8.7912 | 800 | 0.0001 | - | | 9.3407 | 850 | 0.0001 | - | | 9.8901 | 900 | 0.0001 | - | | 10.4396 | 950 | 0.0001 | - | | 10.9890 | 1000 | 0.0001 | - | | 11.5385 | 1050 | 0.0001 | - | | 12.0879 | 1100 | 0.0001 | - | | 12.6374 | 1150 | 0.0001 | - | | 13.1868 | 1200 | 0.0001 | - | | 13.7363 | 1250 | 0.0001 | - | | 14.2857 | 1300 | 0.0001 | - | | 14.8352 | 1350 | 0.0 | - | | 15.3846 | 1400 | 0.0001 | - | | 15.9341 | 1450 | 0.0001 | - | | 16.4835 | 1500 | 0.0001 | - | | 17.0330 | 1550 | 0.0001 | - | | 17.5824 | 1600 | 0.0 | - | | 18.1319 | 1650 | 0.0 | - | | 18.6813 | 1700 | 0.0 | - | | 19.2308 | 1750 | 0.0 | - | | 19.7802 | 1800 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```