--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: '[바다원] 깨끗한 돌김자반볶음 오리지널 40g x 5봉 (주)씨제이이엔엠' - text: 쭈꾸미사령부 매운맛 300g 3개 불타는 매운맛 원츄쟈챠 - text: 냉동 새우 튀김 300g 6미 10미 대용량 업소용 빵가루 왕새우튀김 코코넛쉬림프 360g (30미) 주식회사 더꽃게 - text: 잇투헤븐 팔당 불 오징어 매운 오징어 볶음 400g 쭈꾸미도사 쭈꾸미볶음 01.팔당불오징어400g 1팩 (주)잇투헤븐 - text: CJ 명가김 파래김 4g 16입 트릴리어네어스 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.8689361702127659 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 6 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2.0 | | | 1.0 | | | 0.0 | | | 3.0 | | | 5.0 | | | 4.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.8689 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_fd11") # Run inference preds = model("CJ 명가김 파래김 4g 16입 트릴리어네어스") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 9.1164 | 23 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 25 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0233 | 1 | 0.4609 | - | | 1.1628 | 50 | 0.2116 | - | | 2.3256 | 100 | 0.0876 | - | | 3.4884 | 150 | 0.0442 | - | | 4.6512 | 200 | 0.0254 | - | | 5.8140 | 250 | 0.0133 | - | | 6.9767 | 300 | 0.0252 | - | | 8.1395 | 350 | 0.0176 | - | | 9.3023 | 400 | 0.0116 | - | | 10.4651 | 450 | 0.004 | - | | 11.6279 | 500 | 0.0231 | - | | 12.7907 | 550 | 0.0023 | - | | 13.9535 | 600 | 0.0017 | - | | 15.1163 | 650 | 0.0002 | - | | 16.2791 | 700 | 0.0001 | - | | 17.4419 | 750 | 0.0001 | - | | 18.6047 | 800 | 0.0001 | - | | 19.7674 | 850 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```