--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: '[본죽]5첩반상 5종(진미채+멸치+연근+콩자반+깻잎) 5팩+5팩 외 밑반찬 5종 5팩+5팩 메가글로벌001' - text: 싸고 맛있고 영양까지 풍부한 110가지 우리집반찬/우리홈메이드푸드 도토리묵/양념 홈메이드 푸드 - text: 샘표 쓱쓱싹싹밥도둑 반찬 9봉 골라담기 / 장조림 오징어채볶음 멸치볶음 2. 고추장 멸치볶음 3봉_4. 쇠고기 장조림 3봉_6. 돼지고기 장조림 3봉 샘표식품 주식회사 - text: 본죽 쇠고기 장조림 170g x 4 마이엘(Maiel) - text: 국산 고추장멸치볶음 500g 조림 반찬 국산 오복채 1kg 사계절반찬 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.9101876675603218 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 9 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 6.0 | | | 1.0 | | | 5.0 | | | 2.0 | | | 8.0 | | | 4.0 | | | 7.0 | | | 0.0 | | | 3.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.9102 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_fd9") # Run inference preds = model("본죽 쇠고기 장조림 170g x 4 마이엘(Maiel)") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 10.1981 | 21 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 42 | | 2.0 | 22 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0154 | 1 | 0.4845 | - | | 0.7692 | 50 | 0.2975 | - | | 1.5385 | 100 | 0.0992 | - | | 2.3077 | 150 | 0.0418 | - | | 3.0769 | 200 | 0.0246 | - | | 3.8462 | 250 | 0.0358 | - | | 4.6154 | 300 | 0.0185 | - | | 5.3846 | 350 | 0.0123 | - | | 6.1538 | 400 | 0.0121 | - | | 6.9231 | 450 | 0.0008 | - | | 7.6923 | 500 | 0.0003 | - | | 8.4615 | 550 | 0.0002 | - | | 9.2308 | 600 | 0.0001 | - | | 10.0 | 650 | 0.0001 | - | | 10.7692 | 700 | 0.0001 | - | | 11.5385 | 750 | 0.0002 | - | | 12.3077 | 800 | 0.0001 | - | | 13.0769 | 850 | 0.0001 | - | | 13.8462 | 900 | 0.0001 | - | | 14.6154 | 950 | 0.0001 | - | | 15.3846 | 1000 | 0.0001 | - | | 16.1538 | 1050 | 0.0001 | - | | 16.9231 | 1100 | 0.0001 | - | | 17.6923 | 1150 | 0.0001 | - | | 18.4615 | 1200 | 0.0001 | - | | 19.2308 | 1250 | 0.0001 | - | | 20.0 | 1300 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```