--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 마사지 복 경락 잠옷 피부샵 세트 호텔 아로마 스파 HFG 그레이 남성_XXL 민물유통 - text: 바스템 리워터 히든커버 필터 샤워기 리워터 히든커버 교체필터 4개입 바스템 - text: 어메니티타올 환갑 칠순 팔순 구순 회갑 고희 답례품 40수 무형광 주방 고리수건 자수 화이트_동백 어메니티타올 - text: '[추가 5%할인] 바디럽 비타필터 2개 (녹물염소제거/보습효과/샤워기필터/비타민필터/비타샤워기) [NEW] 민티시트러스 NEW 우디오렌지_NEW 퓨어소피 메가글로벌002' - text: 깔끔디자인 욕실수건걸이 6 pcs 세트 가정용 워시 브러쉬 컵 액체 블랙수건걸이 컵세트 빨간 리마108 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.6881059449647262 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 12 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 10.0 | | | 8.0 | | | 1.0 | | | 6.0 | | | 5.0 | | | 9.0 | | | 4.0 | | | 0.0 | | | 7.0 | | | 11.0 | | | 3.0 | | | 2.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.6881 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_lh18") # Run inference preds = model("바스템 리워터 히든커버 필터 샤워기 리워터 히든커버 교체필터 4개입 바스템") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 10.42 | 26 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | | 9.0 | 50 | | 10.0 | 50 | | 11.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0106 | 1 | 0.4109 | - | | 0.5319 | 50 | 0.305 | - | | 1.0638 | 100 | 0.2044 | - | | 1.5957 | 150 | 0.0728 | - | | 2.1277 | 200 | 0.0314 | - | | 2.6596 | 250 | 0.0054 | - | | 3.1915 | 300 | 0.0036 | - | | 3.7234 | 350 | 0.0103 | - | | 4.2553 | 400 | 0.0047 | - | | 4.7872 | 450 | 0.0002 | - | | 5.3191 | 500 | 0.0001 | - | | 5.8511 | 550 | 0.0001 | - | | 6.3830 | 600 | 0.0001 | - | | 6.9149 | 650 | 0.0001 | - | | 7.4468 | 700 | 0.0001 | - | | 7.9787 | 750 | 0.0001 | - | | 8.5106 | 800 | 0.0001 | - | | 9.0426 | 850 | 0.0 | - | | 9.5745 | 900 | 0.0001 | - | | 10.1064 | 950 | 0.0001 | - | | 10.6383 | 1000 | 0.0 | - | | 11.1702 | 1050 | 0.0 | - | | 11.7021 | 1100 | 0.0 | - | | 12.2340 | 1150 | 0.0 | - | | 12.7660 | 1200 | 0.0001 | - | | 13.2979 | 1250 | 0.0 | - | | 13.8298 | 1300 | 0.0 | - | | 14.3617 | 1350 | 0.0 | - | | 14.8936 | 1400 | 0.0001 | - | | 15.4255 | 1450 | 0.0 | - | | 15.9574 | 1500 | 0.0 | - | | 16.4894 | 1550 | 0.0 | - | | 17.0213 | 1600 | 0.0 | - | | 17.5532 | 1650 | 0.0 | - | | 18.0851 | 1700 | 0.0001 | - | | 18.6170 | 1750 | 0.0 | - | | 19.1489 | 1800 | 0.0 | - | | 19.6809 | 1850 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```