--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 르꼬끄골프 남성 V넥 컬러포인트 니트 가디건 GO321MKC91 스포츠/레저>골프>골프의류>니트 - text: 손가락 보호핑거그립8개입 10세트 보로 프 테이 스포츠/레저>골프>골프연습용품>퍼팅용품 - text: 스컬독 골프 비트코인 볼마커 캐디용품 버디나비 동전 볼마크 스포츠/레저>골프>골프필드용품>골프티 - text: 닥스골프 여성 하우스체크 전판 패턴 여름 홑겹 점퍼 DNJU4B901I2 스포츠/레저>골프>골프의류>점퍼 - text: 미스터골프 빈티지 클래식 금도금 볼마크 그린보수기 홀인원 스포츠/레저>골프>골프필드용품>기타필드용품 metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: mini1013/master_domain model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 9 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1.0 | | | 8.0 | | | 6.0 | | | 7.0 | | | 5.0 | | | 3.0 | | | 4.0 | | | 0.0 | | | 2.0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 1.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_sl1") # Run inference preds = model("손가락 보호핑거그립8개입 10세트 보로 프 테이 스포츠/레저>골프>골프연습용품>퍼팅용품") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 2 | 7.9873 | 18 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 70 | | 1.0 | 70 | | 2.0 | 70 | | 3.0 | 70 | | 4.0 | 70 | | 5.0 | 70 | | 6.0 | 70 | | 7.0 | 70 | | 8.0 | 70 | ### Training Hyperparameters - batch_size: (256, 256) - num_epochs: (30, 30) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 50 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0081 | 1 | 0.5161 | - | | 0.4032 | 50 | 0.494 | - | | 0.8065 | 100 | 0.321 | - | | 1.2097 | 150 | 0.2113 | - | | 1.6129 | 200 | 0.0942 | - | | 2.0161 | 250 | 0.0468 | - | | 2.4194 | 300 | 0.0134 | - | | 2.8226 | 350 | 0.0003 | - | | 3.2258 | 400 | 0.0002 | - | | 3.6290 | 450 | 0.0001 | - | | 4.0323 | 500 | 0.0001 | - | | 4.4355 | 550 | 0.0001 | - | | 4.8387 | 600 | 0.0001 | - | | 5.2419 | 650 | 0.0001 | - | | 5.6452 | 700 | 0.0001 | - | | 6.0484 | 750 | 0.0001 | - | | 6.4516 | 800 | 0.0001 | - | | 6.8548 | 850 | 0.0001 | - | | 7.2581 | 900 | 0.0001 | - | | 7.6613 | 950 | 0.0001 | - | | 8.0645 | 1000 | 0.0001 | - | | 8.4677 | 1050 | 0.0 | - | | 8.8710 | 1100 | 0.0 | - | | 9.2742 | 1150 | 0.0 | - | | 9.6774 | 1200 | 0.0 | - | | 10.0806 | 1250 | 0.0 | - | | 10.4839 | 1300 | 0.0 | - | | 10.8871 | 1350 | 0.0 | - | | 11.2903 | 1400 | 0.0 | - | | 11.6935 | 1450 | 0.0 | - | | 12.0968 | 1500 | 0.0 | - | | 12.5 | 1550 | 0.0 | - | | 12.9032 | 1600 | 0.0 | - | | 13.3065 | 1650 | 0.0 | - | | 13.7097 | 1700 | 0.0 | - | | 14.1129 | 1750 | 0.0 | - | | 14.5161 | 1800 | 0.0 | - | | 14.9194 | 1850 | 0.0 | - | | 15.3226 | 1900 | 0.0 | - | | 15.7258 | 1950 | 0.0 | - | | 16.1290 | 2000 | 0.0 | - | | 16.5323 | 2050 | 0.0 | - | | 16.9355 | 2100 | 0.0 | - | | 17.3387 | 2150 | 0.0 | - | | 17.7419 | 2200 | 0.0 | - | | 18.1452 | 2250 | 0.0 | - | | 18.5484 | 2300 | 0.0 | - | | 18.9516 | 2350 | 0.0 | - | | 19.3548 | 2400 | 0.0 | - | | 19.7581 | 2450 | 0.0 | - | | 20.1613 | 2500 | 0.0 | - | | 20.5645 | 2550 | 0.0 | - | | 20.9677 | 2600 | 0.0 | - | | 21.3710 | 2650 | 0.0 | - | | 21.7742 | 2700 | 0.0 | - | | 22.1774 | 2750 | 0.0 | - | | 22.5806 | 2800 | 0.0 | - | | 22.9839 | 2850 | 0.0 | - | | 23.3871 | 2900 | 0.0 | - | | 23.7903 | 2950 | 0.0 | - | | 24.1935 | 3000 | 0.0 | - | | 24.5968 | 3050 | 0.0 | - | | 25.0 | 3100 | 0.0 | - | | 25.4032 | 3150 | 0.0 | - | | 25.8065 | 3200 | 0.0 | - | | 26.2097 | 3250 | 0.0 | - | | 26.6129 | 3300 | 0.0 | - | | 27.0161 | 3350 | 0.0 | - | | 27.4194 | 3400 | 0.0 | - | | 27.8226 | 3450 | 0.0 | - | | 28.2258 | 3500 | 0.0 | - | | 28.6290 | 3550 | 0.0 | - | | 29.0323 | 3600 | 0.0 | - | | 29.4355 | 3650 | 0.0 | - | | 29.8387 | 3700 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```