--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Battle 배틀 유스 팡스 마우스 가드 2팩 스포츠/레저>보호용품>마우스피스 - text: 프로이론 바벨 스쿼드 패드 헬스 목 어깨보호대 스포츠/레저>보호용품>어깨보호대 - text: 체육관 비치용 마우스피스 복싱 가드 태권도 합기도 스포츠/레저>보호용품>마우스피스 - text: 태권도 헤드기어 호구 헬멧 보호장비 킥복싱 스포츠/레저>보호용품>머리보호대 - text: 에버라스트 Everlast EverGel 마우스가드 그린 1400009 스포츠/레저>보호용품>마우스피스 metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: mini1013/master_domain model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 13 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 4.0 | | | 3.0 | | | 6.0 | | | 0.0 | | | 2.0 | | | 10.0 | | | 12.0 | | | 1.0 | | | 9.0 | | | 11.0 | | | 5.0 | | | 7.0 | | | 8.0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 1.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_sl13") # Run inference preds = model("태권도 헤드기어 호구 헬멧 보호장비 킥복싱 스포츠/레저>보호용품>머리보호대") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 2 | 9.0551 | 21 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 70 | | 1.0 | 69 | | 2.0 | 70 | | 3.0 | 70 | | 4.0 | 69 | | 5.0 | 70 | | 6.0 | 70 | | 7.0 | 70 | | 8.0 | 70 | | 9.0 | 69 | | 10.0 | 70 | | 11.0 | 70 | | 12.0 | 70 | ### Training Hyperparameters - batch_size: (256, 256) - num_epochs: (30, 30) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 50 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0056 | 1 | 0.5164 | - | | 0.2809 | 50 | 0.4982 | - | | 0.5618 | 100 | 0.3968 | - | | 0.8427 | 150 | 0.2131 | - | | 1.1236 | 200 | 0.0919 | - | | 1.4045 | 250 | 0.031 | - | | 1.6854 | 300 | 0.0171 | - | | 1.9663 | 350 | 0.0078 | - | | 2.2472 | 400 | 0.0066 | - | | 2.5281 | 450 | 0.0002 | - | | 2.8090 | 500 | 0.0 | - | | 3.0899 | 550 | 0.0 | - | | 3.3708 | 600 | 0.0001 | - | | 3.6517 | 650 | 0.0 | - | | 3.9326 | 700 | 0.0 | - | | 4.2135 | 750 | 0.0 | - | | 4.4944 | 800 | 0.0001 | - | | 4.7753 | 850 | 0.0 | - | | 5.0562 | 900 | 0.0 | - | | 5.3371 | 950 | 0.0 | - | | 5.6180 | 1000 | 0.0 | - | | 5.8989 | 1050 | 0.0002 | - | | 6.1798 | 1100 | 0.0 | - | | 6.4607 | 1150 | 0.0 | - | | 6.7416 | 1200 | 0.0 | - | | 7.0225 | 1250 | 0.0 | - | | 7.3034 | 1300 | 0.0 | - | | 7.5843 | 1350 | 0.0 | - | | 7.8652 | 1400 | 0.0 | - | | 8.1461 | 1450 | 0.0 | - | | 8.4270 | 1500 | 0.0 | - | | 8.7079 | 1550 | 0.0 | - | | 8.9888 | 1600 | 0.0 | - | | 9.2697 | 1650 | 0.0 | - | | 9.5506 | 1700 | 0.0 | - | | 9.8315 | 1750 | 0.0 | - | | 10.1124 | 1800 | 0.0 | - | | 10.3933 | 1850 | 0.0 | - | | 10.6742 | 1900 | 0.0 | - | | 10.9551 | 1950 | 0.0 | - | | 11.2360 | 2000 | 0.0 | - | | 11.5169 | 2050 | 0.0 | - | | 11.7978 | 2100 | 0.0 | - | | 12.0787 | 2150 | 0.0 | - | | 12.3596 | 2200 | 0.0 | - | | 12.6404 | 2250 | 0.0 | - | | 12.9213 | 2300 | 0.0 | - | | 13.2022 | 2350 | 0.0 | - | | 13.4831 | 2400 | 0.0 | - | | 13.7640 | 2450 | 0.0 | - | | 14.0449 | 2500 | 0.0 | - | | 14.3258 | 2550 | 0.0 | - | | 14.6067 | 2600 | 0.0 | - | | 14.8876 | 2650 | 0.0 | - | | 15.1685 | 2700 | 0.0 | - | | 15.4494 | 2750 | 0.0 | - | | 15.7303 | 2800 | 0.0 | - | | 16.0112 | 2850 | 0.0 | - | | 16.2921 | 2900 | 0.0 | - | | 16.5730 | 2950 | 0.0 | - | | 16.8539 | 3000 | 0.0 | - | | 17.1348 | 3050 | 0.0 | - | | 17.4157 | 3100 | 0.0 | - | | 17.6966 | 3150 | 0.0 | - | | 17.9775 | 3200 | 0.0 | - | | 18.2584 | 3250 | 0.0 | - | | 18.5393 | 3300 | 0.0 | - | | 18.8202 | 3350 | 0.0 | - | | 19.1011 | 3400 | 0.0 | - | | 19.3820 | 3450 | 0.0 | - | | 19.6629 | 3500 | 0.0 | - | | 19.9438 | 3550 | 0.0 | - | | 20.2247 | 3600 | 0.0 | - | | 20.5056 | 3650 | 0.0 | - | | 20.7865 | 3700 | 0.0 | - | | 21.0674 | 3750 | 0.0 | - | | 21.3483 | 3800 | 0.0 | - | | 21.6292 | 3850 | 0.0 | - | | 21.9101 | 3900 | 0.0 | - | | 22.1910 | 3950 | 0.0 | - | | 22.4719 | 4000 | 0.0 | - | | 22.7528 | 4050 | 0.0 | - | | 23.0337 | 4100 | 0.0 | - | | 23.3146 | 4150 | 0.0 | - | | 23.5955 | 4200 | 0.0 | - | | 23.8764 | 4250 | 0.0 | - | | 24.1573 | 4300 | 0.0 | - | | 24.4382 | 4350 | 0.0 | - | | 24.7191 | 4400 | 0.0 | - | | 25.0 | 4450 | 0.0 | - | | 25.2809 | 4500 | 0.0 | - | | 25.5618 | 4550 | 0.0 | - | | 25.8427 | 4600 | 0.0 | - | | 26.1236 | 4650 | 0.0 | - | | 26.4045 | 4700 | 0.0 | - | | 26.6854 | 4750 | 0.0 | - | | 26.9663 | 4800 | 0.0 | - | | 27.2472 | 4850 | 0.0 | - | | 27.5281 | 4900 | 0.0 | - | | 27.8090 | 4950 | 0.0 | - | | 28.0899 | 5000 | 0.0 | - | | 28.3708 | 5050 | 0.0 | - | | 28.6517 | 5100 | 0.0 | - | | 28.9326 | 5150 | 0.0 | - | | 29.2135 | 5200 | 0.0 | - | | 29.4944 | 5250 | 0.0 | - | | 29.7753 | 5300 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```