--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 발열양말 방한 보온양말 등산 낚시 스키 스노우보드 스케이트 야외작업 스포츠/레저>스키/보드>스키/보드방한용품>양말 - text: 무크 엠 무크 펠로 데크 다크네이비 517413203ZB 스포츠/레저>스키/보드>스노보드장비>데크 - text: 스키복 성인 자켓 상의 여성용 JACKET 스키자켓 남성 스포츠/레저>스키/보드>스키복>상의 - text: Toko Edge Tuner Pro 스노우보드 엣지 튜닝 컷팅 스포츠/레저>스키/보드>스키/보드용품>보수장비 - text: 헬리아 주니어 고글 카이로스 무광퍼플블랙 보드고글 스포츠고글 스포츠/레저>스키/보드>스키/보드용품>고글 metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: mini1013/master_domain model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 6 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2.0 | | | 0.0 | | | 5.0 | | | 4.0 | | | 3.0 | | | 1.0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 1.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_sl19") # Run inference preds = model("스키복 성인 자켓 상의 여성용 JACKET 스키자켓 남성 스포츠/레저>스키/보드>스키복>상의") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 4 | 9.4619 | 18 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 70 | | 1.0 | 70 | | 2.0 | 70 | | 3.0 | 70 | | 4.0 | 70 | | 5.0 | 70 | ### Training Hyperparameters - batch_size: (256, 256) - num_epochs: (30, 30) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 50 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0120 | 1 | 0.4926 | - | | 0.6024 | 50 | 0.497 | - | | 1.2048 | 100 | 0.5003 | - | | 1.8072 | 150 | 0.1918 | - | | 2.4096 | 200 | 0.0218 | - | | 3.0120 | 250 | 0.0004 | - | | 3.6145 | 300 | 0.0003 | - | | 4.2169 | 350 | 0.0001 | - | | 4.8193 | 400 | 0.0001 | - | | 5.4217 | 450 | 0.0 | - | | 6.0241 | 500 | 0.0 | - | | 6.6265 | 550 | 0.0 | - | | 7.2289 | 600 | 0.0 | - | | 7.8313 | 650 | 0.0 | - | | 8.4337 | 700 | 0.0 | - | | 9.0361 | 750 | 0.0 | - | | 9.6386 | 800 | 0.0 | - | | 10.2410 | 850 | 0.0 | - | | 10.8434 | 900 | 0.0 | - | | 11.4458 | 950 | 0.0 | - | | 12.0482 | 1000 | 0.0 | - | | 12.6506 | 1050 | 0.0001 | - | | 13.2530 | 1100 | 0.0 | - | | 13.8554 | 1150 | 0.0 | - | | 14.4578 | 1200 | 0.0 | - | | 15.0602 | 1250 | 0.0 | - | | 15.6627 | 1300 | 0.0 | - | | 16.2651 | 1350 | 0.0 | - | | 16.8675 | 1400 | 0.0 | - | | 17.4699 | 1450 | 0.0 | - | | 18.0723 | 1500 | 0.0 | - | | 18.6747 | 1550 | 0.0 | - | | 19.2771 | 1600 | 0.0 | - | | 19.8795 | 1650 | 0.0 | - | | 20.4819 | 1700 | 0.0 | - | | 21.0843 | 1750 | 0.0 | - | | 21.6867 | 1800 | 0.0 | - | | 22.2892 | 1850 | 0.0 | - | | 22.8916 | 1900 | 0.0 | - | | 23.4940 | 1950 | 0.0 | - | | 24.0964 | 2000 | 0.0 | - | | 24.6988 | 2050 | 0.0 | - | | 25.3012 | 2100 | 0.0 | - | | 25.9036 | 2150 | 0.0 | - | | 26.5060 | 2200 | 0.0 | - | | 27.1084 | 2250 | 0.0 | - | | 27.7108 | 2300 | 0.0 | - | | 28.3133 | 2350 | 0.0 | - | | 28.9157 | 2400 | 0.0 | - | | 29.5181 | 2450 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```