--- base_model: mini1013/master_domain library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 더툴랩 더스타일래쉬 4종리얼/내츄럴/볼륨/맥스 중 택1 002 내츄럴 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 브로우관리 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 브로우관리 - text: 속눈썹연장재료 래쉬홀릭 벨벳속눈썹 CC(D)컬 + 해면 1장_0.15_11mm (#M)홈>속눈썹연장>속눈썹 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제 - text: 더툴랩 더스타일래쉬 4종(리얼/내츄럴/볼륨/맥스) 중 택1 004 맥스 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리 - text: 더툴랩 더스타일래쉬 4종리얼/내츄럴/볼륨/맥스 중 택1 004 맥스 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리 - text: 더툴랩 더스타일래쉬 4종(리얼/내츄럴/볼륨/맥스) 중 택1 004 맥스 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.9740634005763689 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 5 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 4 | | | 1 | | | 0 | | | 2 | | | 3 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.9741 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_top_bt6_3_test_flat") # Run inference preds = model("속눈썹연장재료 래쉬홀릭 벨벳속눈썹 CC(D)컬 + 해면 1장_0.15_11mm (#M)홈>속눈썹연장>속눈썹 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 13 | 19.4972 | 47 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 50 | | 1 | 9 | | 2 | 50 | | 3 | 22 | | 4 | 50 | ### Training Hyperparameters - batch_size: (64, 64) - num_epochs: (30, 30) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 100 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0035 | 1 | 0.4006 | - | | 0.1767 | 50 | 0.4188 | - | | 0.3534 | 100 | 0.3674 | - | | 0.5300 | 150 | 0.3054 | - | | 0.7067 | 200 | 0.2262 | - | | 0.8834 | 250 | 0.089 | - | | 1.0601 | 300 | 0.0198 | - | | 1.2367 | 350 | 0.0042 | - | | 1.4134 | 400 | 0.0019 | - | | 1.5901 | 450 | 0.0009 | - | | 1.7668 | 500 | 0.0005 | - | | 1.9435 | 550 | 0.0005 | - | | 2.1201 | 600 | 0.0003 | - | | 2.2968 | 650 | 0.0006 | - | | 2.4735 | 700 | 0.0012 | - | | 2.6502 | 750 | 0.0002 | - | | 2.8269 | 800 | 0.0001 | - | | 3.0035 | 850 | 0.0001 | - | | 3.1802 | 900 | 0.0 | - | | 3.3569 | 950 | 0.0 | - | | 3.5336 | 1000 | 0.0 | - | | 3.7102 | 1050 | 0.0 | - | | 3.8869 | 1100 | 0.0 | - | | 4.0636 | 1150 | 0.0 | - | | 4.2403 | 1200 | 0.0 | - | | 4.4170 | 1250 | 0.0 | - | | 4.5936 | 1300 | 0.0 | - | | 4.7703 | 1350 | 0.0 | - | | 4.9470 | 1400 | 0.0 | - | | 5.1237 | 1450 | 0.0 | - | | 5.3004 | 1500 | 0.0 | - | | 5.4770 | 1550 | 0.0 | - | | 5.6537 | 1600 | 0.0 | - | | 5.8304 | 1650 | 0.0 | - | | 6.0071 | 1700 | 0.0 | - | | 6.1837 | 1750 | 0.0 | - | | 6.3604 | 1800 | 0.0 | - | | 6.5371 | 1850 | 0.0 | - | | 6.7138 | 1900 | 0.0 | - | | 6.8905 | 1950 | 0.0002 | - | | 7.0671 | 2000 | 0.0003 | - | | 7.2438 | 2050 | 0.0026 | - | | 7.4205 | 2100 | 0.0005 | - | | 7.5972 | 2150 | 0.0001 | - | | 7.7739 | 2200 | 0.0 | - | | 7.9505 | 2250 | 0.0 | - | | 8.1272 | 2300 | 0.0 | - | | 8.3039 | 2350 | 0.0 | - | | 8.4806 | 2400 | 0.0 | - | | 8.6572 | 2450 | 0.0002 | - | | 8.8339 | 2500 | 0.0 | - | | 9.0106 | 2550 | 0.0 | - | | 9.1873 | 2600 | 0.0 | - | | 9.3640 | 2650 | 0.0 | - | | 9.5406 | 2700 | 0.0 | - | | 9.7173 | 2750 | 0.0 | - | | 9.8940 | 2800 | 0.0 | - | | 10.0707 | 2850 | 0.0 | - | | 10.2473 | 2900 | 0.0 | - | | 10.4240 | 2950 | 0.0 | - | | 10.6007 | 3000 | 0.0 | - | | 10.7774 | 3050 | 0.0 | - | | 10.9541 | 3100 | 0.0 | - | | 11.1307 | 3150 | 0.0 | - | | 11.3074 | 3200 | 0.0 | - | | 11.4841 | 3250 | 0.0 | - | | 11.6608 | 3300 | 0.0 | - | | 11.8375 | 3350 | 0.0 | - | | 12.0141 | 3400 | 0.0 | - | | 12.1908 | 3450 | 0.0 | - | | 12.3675 | 3500 | 0.0 | - | | 12.5442 | 3550 | 0.0 | - | | 12.7208 | 3600 | 0.0 | - | | 12.8975 | 3650 | 0.0 | - | | 13.0742 | 3700 | 0.0 | - | | 13.2509 | 3750 | 0.0 | - | | 13.4276 | 3800 | 0.0 | - | | 13.6042 | 3850 | 0.0 | - | | 13.7809 | 3900 | 0.0 | - | | 13.9576 | 3950 | 0.0 | - | | 14.1343 | 4000 | 0.0 | - | | 14.3110 | 4050 | 0.0 | - | | 14.4876 | 4100 | 0.0 | - | | 14.6643 | 4150 | 0.0 | - | | 14.8410 | 4200 | 0.0 | - | | 15.0177 | 4250 | 0.0 | - | | 15.1943 | 4300 | 0.0 | - | | 15.3710 | 4350 | 0.0 | - | | 15.5477 | 4400 | 0.0 | - | | 15.7244 | 4450 | 0.0 | - | | 15.9011 | 4500 | 0.0 | - | | 16.0777 | 4550 | 0.0 | - | | 16.2544 | 4600 | 0.0 | - | | 16.4311 | 4650 | 0.0 | - | | 16.6078 | 4700 | 0.0 | - | | 16.7845 | 4750 | 0.0 | - | | 16.9611 | 4800 | 0.0 | - | | 17.1378 | 4850 | 0.0 | - | | 17.3145 | 4900 | 0.0 | - | | 17.4912 | 4950 | 0.0 | - | | 17.6678 | 5000 | 0.0 | - | | 17.8445 | 5050 | 0.0 | - | | 18.0212 | 5100 | 0.0 | - | | 18.1979 | 5150 | 0.0 | - | | 18.3746 | 5200 | 0.0 | - | | 18.5512 | 5250 | 0.0 | - | | 18.7279 | 5300 | 0.0 | - | | 18.9046 | 5350 | 0.0 | - | | 19.0813 | 5400 | 0.0 | - | | 19.2580 | 5450 | 0.0 | - | | 19.4346 | 5500 | 0.0 | - | | 19.6113 | 5550 | 0.0 | - | | 19.7880 | 5600 | 0.0 | - | | 19.9647 | 5650 | 0.0 | - | | 20.1413 | 5700 | 0.0 | - | | 20.3180 | 5750 | 0.0 | - | | 20.4947 | 5800 | 0.0 | - | | 20.6714 | 5850 | 0.0 | - | | 20.8481 | 5900 | 0.0 | - | | 21.0247 | 5950 | 0.0 | - | | 21.2014 | 6000 | 0.0 | - | | 21.3781 | 6050 | 0.0 | - | | 21.5548 | 6100 | 0.0 | - | | 21.7314 | 6150 | 0.0 | - | | 21.9081 | 6200 | 0.0 | - | | 22.0848 | 6250 | 0.0003 | - | | 22.2615 | 6300 | 0.0001 | - | | 22.4382 | 6350 | 0.0002 | - | | 22.6148 | 6400 | 0.0 | - | | 22.7915 | 6450 | 0.0 | - | | 22.9682 | 6500 | 0.0 | - | | 23.1449 | 6550 | 0.0 | - | | 23.3216 | 6600 | 0.0 | - | | 23.4982 | 6650 | 0.0 | - | | 23.6749 | 6700 | 0.0 | - | | 23.8516 | 6750 | 0.0 | - | | 24.0283 | 6800 | 0.0 | - | | 24.2049 | 6850 | 0.0 | - | | 24.3816 | 6900 | 0.0 | - | | 24.5583 | 6950 | 0.0 | - | | 24.7350 | 7000 | 0.0 | - | | 24.9117 | 7050 | 0.0 | - | | 25.0883 | 7100 | 0.0 | - | | 25.2650 | 7150 | 0.0 | - | | 25.4417 | 7200 | 0.0 | - | | 25.6184 | 7250 | 0.0 | - | | 25.7951 | 7300 | 0.0 | - | | 25.9717 | 7350 | 0.0 | - | | 26.1484 | 7400 | 0.0 | - | | 26.3251 | 7450 | 0.0 | - | | 26.5018 | 7500 | 0.0 | - | | 26.6784 | 7550 | 0.0 | - | | 26.8551 | 7600 | 0.0 | - | | 27.0318 | 7650 | 0.0 | - | | 27.2085 | 7700 | 0.0 | - | | 27.3852 | 7750 | 0.0 | - | | 27.5618 | 7800 | 0.0 | - | | 27.7385 | 7850 | 0.0 | - | | 27.9152 | 7900 | 0.0 | - | | 28.0919 | 7950 | 0.0 | - | | 28.2686 | 8000 | 0.0 | - | | 28.4452 | 8050 | 0.0 | - | | 28.6219 | 8100 | 0.0 | - | | 28.7986 | 8150 | 0.0 | - | | 28.9753 | 8200 | 0.0 | - | | 29.1519 | 8250 | 0.0 | - | | 29.3286 | 8300 | 0.0 | - | | 29.5053 | 8350 | 0.0 | - | | 29.6820 | 8400 | 0.0 | - | | 29.8587 | 8450 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```