--- base_model: meta-llama/Meta-Llama-3-70B library_name: peft license: llama3 tags: - axolotl - generated_from_trainer model-index: - name: llama3-70b-lora16-cove_format_062024_ift results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: meta-llama/Meta-Llama-3-70B bf16: true dataset_prepared_path: last_run_prepared debug: null deepspeed: null early_stopping_patience: null eval_table_size: null evals_per_epoch: 0 flash_attention: true fp16: null deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false group_by_length: false hub_model_id: minionai/llama3-70b-lora16-cove_format_062024_ift hub_strategy: all_checkpoints learning_rate: 1e-4 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lora_target_modules: null lr_scheduler: cosine micro_batch_size: 1 model_type: LlamaForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: ./lora-out pad_to_sequence_len: true resume_from_checkpoint: null auto_resume_from_checkpoints: true sample_packing: true wandb_entity: minionai wandb_name: webarena_amazon_v0 wandb_project: webarena saves_per_epoch: 1 sequence_len: 8192 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false val_set_size: 0 warmup_steps: 100 weight_decay: 0.0 datasets: - path: minionai/prod_070124_amzn_webarena_v0_ift type: system_prompt: "" system_format: "{system}" field_system: system field_instruction: instruction field_input: input field_output: output format: |- User: {instruction} {input} Assistant: # 'no_input_format' cannot include {input} no_input_format: "### System:\nBelow is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:\nverify(\"" ```

[Visualize in Weights & Biases](https://wandb.ai/minionai/webarena/runs/wwb1oxg9) # llama3-70b-lora16-cove_format_062024_ift This model is a fine-tuned version of [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1