--- language: ja license: mit widget: - text: "自然言語処理が面白い" metrics: - accuracy - f1 --- # bert-japanese_finetuned-sentiment-analysis This model was trained from scratch on the Japanese Sentiment Polarity Dictionary dataset. ## Pre-trained model jarvisx17/japanese-sentiment-analysis
Link : https://huggingface.co/jarvisx17/japanese-sentiment-analysis ## Training Data The model was trained on Japanese Sentiment Polarity Dictionary dataset.
link : https://www.cl.ecei.tohoku.ac.jp/Open_Resources-Japanese_Sentiment_Polarity_Dictionary.html ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ## Usage You can use cURL to access this model: Python API: ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("minutillamolinara/bert-japanese_finetuned-sentiment-analysis") model = AutoModelForSequenceClassification.from_pretrained("minutillamolinara/bert-japanese_finetuned-sentiment-analysis") inputs = tokenizer("自然言語処理が面白い", return_tensors="pt") outputs = model(**inputs) ``` ### Dependencies - !pip install fugashi - !pip install unidic_lite ## Licenses MIT