--- library_name: transformers language: - de license: apache-2.0 base_model: mkenfenheuer/whisper-small-de-v2 tags: - generated_from_trainer datasets: - mkenfenheuer/whisper-small-de-v2 metrics: - wer model-index: - name: Whisper Small DE v3.0 - Maximilian Kenfenheuer results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mkenfenheuer/whisper-small-de-v2 config: de split: test args: 'config: de, split: validated' metrics: - name: Wer type: wer value: 2.451703737799017 --- # Whisper Small DE v3.0 - Maximilian Kenfenheuer This model is a fine-tuned version of [mkenfenheuer/whisper-small-de-v2](https://huggingface.co/mkenfenheuer/whisper-small-de-v2) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.0402 - Wer: 2.4517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 1001 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.0694 | 0.9990 | 1000 | 0.0402 | 2.4517 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0