--- library_name: transformers language: - de license: apache-2.0 base_model: openai/whisper-small tags: - automatic-speech-recognition - generated_from_trainer datasets: - openai/whisper-small metrics: - wer model-index: - name: Whisper Small DE - Maximilian Kenfenheuer results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: openai/whisper-small config: de split: test args: 'config: de, split: validated' metrics: - name: Wer type: wer value: 7.5439641517863185 --- # Whisper Small DE - Maximilian Kenfenheuer This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1231 - Wer: 7.5440 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1911 | 0.25 | 1000 | 0.1567 | 9.4088 | | 0.1959 | 0.5 | 2000 | 0.1382 | 8.5261 | | 0.1843 | 0.75 | 3000 | 0.1285 | 7.8513 | | 0.2134 | 1.0 | 4000 | 0.1231 | 7.5440 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0