--- language: - de tags: - cross-encoder widget: - text: "Was sind Lamas. Das Lama (Lama glama) ist eine Art der Kamele. Es ist in den südamerikanischen Anden verbreitet und eine vom Guanako abstammende Haustierform." example_title: "Example Query / Paragraph" license: apache-2.0 metrics: - Rouge-Score --- # cross-encoder-mmarco-german-distilbert-base ## Model description: This model is a fine-tuned [cross-encoder](https://www.sbert.net/examples/training/cross-encoder/README.html) on the [MMARCO dataset](https://huggingface.co/datasets/unicamp-dl/mmarco) which is the machine translated version of the MS MARCO dataset. As base model for the fine-tuning we use [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) Model input samples are tuples of the following format, either `` assigned to 1 or `` assigned to 0. The model was trained for 1 epoch. ## Model usage The cross-encoder model can be used like this: ``` from sentence_transformers import CrossEncoder model = CrossEncoder('model_name') scores = model.predict([('Query 1', 'Paragraph 1'), ('Query 2', 'Paragraph 2')]) ``` The model will predict scores for the pairs `('Query 1', 'Paragraph 1')` and `('Query 2', 'Paragraph 2')`. For more details on the usage of the cross-encoder models have a look into the [Sentence-Transformers](https://www.sbert.net/) ## Model Performance: Model evaluation was done on 2000 evaluation paragraphs of the dataset. | Accuracy | F1-Score | Precision | Recall | | --- | --- | --- | --- | | 89.70 | 86.82 | 86.82 | 93.50 |