--- base_model: - meta-llama/Meta-Llama-3.1-681B-Instruct library_name: transformers tags: - mergekit - merge --- # 🦙✨ BigLlama-3.1-1T-Instruct ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/ywomdgvQYP9cpr-PH1nf7.png)
🦙⛰️ mlabonne/BigLlama-3.1-681B-Instruct
This is an experimental self-merge using [meta-llama/Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct) and created with [mergekit](https://github.com/cg123/mergekit). This is the direct successor of [Meta-Llama-3-120B-Instruct](https://huggingface.co/mlabonne/Meta-Llama-3-120B-Instruct), a self-merge of Llama 3 70B that produced a decent 120B model for tasks like creative writing. I tweaked the range of duplicated layers to hopefully make a sensible model. Use it at your own risk! ## 🔍 Applications I recommend using this model for creative writing with the Llama 3 chat template. ## ⚡ Quantization TBD. ## 🏆 Evaluation TBD. ## 🧩 Configuration This model was merged using the passthrough merge method. The following YAML configuration was used to produce this model: ```yaml slices: - sources: - layer_range: [0, 105] model: mlabonne/BigLlama-3.1-681B-Instruct - sources: - layer_range: [52, 157] model: mlabonne/BigLlama-3.1-681B-Instruct - sources: - layer_range: [104, 209] model: mlabonne/BigLlama-3.1-681B-Instruct merge_method: passthrough dtype: bfloat16 ``` Here is the code I've used to generate the config and calculate the number of layers/parameters after passthrough: ```python def generate_yaml_config(range_size, total_layers, nb_parameters): new_size = total_layers + total_layers - range_size new_param = (nb_parameters / total_layers) * new_size print(f"New size = {new_size} layers") print(f"New parameters = {new_param:.2f}B") yaml_str = "slices:\n" for i in range(0, round(total_layers - range_size + 1), range_size // 2): start = i end = min(start + range_size, total_layers) yaml_str += f"- sources:\n" yaml_str += f" - layer_range: [{start}, {end}]\n" yaml_str += f" model: meta-llama/Meta-Llama-3.1-405B-Instruct\n" yaml_str += "merge_method: passthrough\n" yaml_str += "dtype: bfloat16\n" print(yaml_str) return new_size, new_param # Example usage new_size, new_param = generate_yaml_config(42, 126, 410) new_size, new_param = generate_yaml_config(105, new_size, new_param) ```