--- license: llama3.1 base_model: cognitivecomputations/dolphin-2.9.4-llama3.1-8b tags: - generated_from_trainer - mlx datasets: - cognitivecomputations/Dolphin-2.9 - m-a-p/CodeFeedback-Filtered-Instruction - cognitivecomputations/dolphin-coder - cognitivecomputations/samantha-data - microsoft/orca-math-word-problems-200k - mlabonne/FineTome-100k - arcee/agent_data - PawanKrd/math-gpt-4o-200k - cognitivecomputations/SystemChat-2.0 --- # mlx-community/dolphin-2.9.4-llama3.1-8b-4bit The Model [mlx-community/dolphin-2.9.4-llama3.1-8b-4bit](https://huggingface.co/mlx-community/dolphin-2.9.4-llama3.1-8b-4bit) was converted to MLX format from [cognitivecomputations/dolphin-2.9.4-llama3.1-8b](https://huggingface.co/cognitivecomputations/dolphin-2.9.4-llama3.1-8b) using mlx-lm version **0.19.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/dolphin-2.9.4-llama3.1-8b-4bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```