--- base_model: karakuri-ai/karakuri-lm-8x7b-instruct-v0.1 datasets: - databricks/databricks-dolly-15k - glaiveai/glaive-code-assistant-v3 - glaiveai/glaive-function-calling-v2 - gretelai/synthetic_text_to_sql - meta-math/MetaMathQA - microsoft/orca-math-word-problems-200k - neural-bridge/rag-dataset-12000 - neural-bridge/rag-hallucination-dataset-1000 - nvidia/HelpSteer - OpenAssistant/oasst2 language: - en - ja library_name: transformers license: apache-2.0 tags: - mixtral - steerlm - mlx --- # mlx-community/karakuri-lm-8x7b-instruct-v0.1 The Model [mlx-community/karakuri-lm-8x7b-instruct-v0.1](https://huggingface.co/mlx-community/karakuri-lm-8x7b-instruct-v0.1) was converted to MLX format from [karakuri-ai/karakuri-lm-8x7b-instruct-v0.1](https://huggingface.co/karakuri-ai/karakuri-lm-8x7b-instruct-v0.1) using mlx-lm version **0.19.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/karakuri-lm-8x7b-instruct-v0.1") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```