--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-finetuned-minds14-en-us results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: MINDS-14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.3578811369509044 --- # whisper-tiny-finetuned-minds14-en-us This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the MINDS-14 dataset. It achieves the following results on the evaluation set: - Loss: 0.7170 - Wer Ortho: 0.3580 - Wer: 0.3579 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.3159 | 3.57 | 100 | 0.5309 | 0.3580 | 0.3553 | | 0.0402 | 7.14 | 200 | 0.5889 | 0.3338 | 0.3301 | | 0.0038 | 10.71 | 300 | 0.6554 | 0.3526 | 0.3495 | | 0.0012 | 14.29 | 400 | 0.6934 | 0.3499 | 0.3495 | | 0.0007 | 17.86 | 500 | 0.7170 | 0.3580 | 0.3579 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3