--- license: mit library_name: peft tags: - trl - sft - generated_from_trainer base_model: microsoft/Phi-3-mini-4k-instruct model-index: - name: phi-3-vi-sft-1 results: [] --- # phi-3-vi-sft-1 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0711 ## Model description Fine-tuning Phi-3-4b with Vietnamese Domain, VI_LIMA and VI_Alpaca Dataset ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 4 - seed: 3407 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4031 | 0.17 | 40 | 1.2004 | | 1.1508 | 0.34 | 80 | 1.1312 | | 1.1055 | 0.51 | 120 | 1.1002 | | 1.0814 | 0.67 | 160 | 1.0820 | | 1.0735 | 0.84 | 200 | 1.0711 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.16.0 - Tokenizers 0.15.2