--- language: - ar license: apache-2.0 base_model: openai/whisper-large tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small ar - Mohammed Bakheet results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: ar split: test args: ar metrics: - name: Wer type: wer value: 12.614980289093298 --- # Whisper Small ar - Mohammed Bakheet نموذج كلام للتعرف على الصوت، هذا النموذج يتميز بدقة عالية في التعرف على الصوت باللغة العربية. This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1921 - Wer: 12.6150 ## Model description This model is a fine-tuned version of openai/whisper-large on the Common Voice 11.0 dataset. It achieves 12.61 WER. Data augmentation can be implemented to further improve the model performance. ## Intended uses & limitations ```python from datasets import load_dataset from transformers import WhisperProcessor, WhisperForConditionalGeneration from datasets import Audio # load the dataset test_dataset = load_dataset("mozilla-foundation/common_voice_11_0", "ar", split="test", use_auth_token=True, trust_remote_code=True) # get the processor and model from mohammed/whisper-small-arabic-cv-11 processor = WhisperProcessor.from_pretrained("mohammed/whisper-large-arabic-cv-11") model = WhisperForConditionalGeneration.from_pretrained("mohammed/whisper-large-arabic-cv-11") model.config.forced_decoder_ids = None # resample the audio files to 16000 test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16000)) # get 10 exmaples of model transcription for i in range(10): sample = test_dataset[i]["audio"] input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features predicted_ids = model.generate(input_features) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) print(f"{i} Reference Sentence: {test_dataset[i]['sentence']}") print(f"{i} Predicted Sentence: {transcription[0]}") ``` ``` 0 Reference Sentence: زارني في أوائل الشهر بدري 0 Predicted Sentence: زارني في أوائل الشهر بدري 1 Reference Sentence: إبنك بطل. 1 Predicted Sentence: ابنك بطل 2 Reference Sentence: الواعظ الأمرد هذا الذي 2 Predicted Sentence: أواعز الأمرج هذا الذي 3 Reference Sentence: سمح له هذا بالتخصص في البرونز الصغير، الذي يتم إنتاجه بشكل رئيسي ومربح للتصدير. 3 Predicted Sentence: سمح له هذا بالتخصص في البلونز الصغير الذي اعتمد منتاجه بشكل رئيسي وغربح للتصدير 4 Reference Sentence: ألديك قلم ؟ 4 Predicted Sentence: ألديك قلم 5 Reference Sentence: يا نديمي قسم بي الى الصهباء 5 Predicted Sentence: يا نديمي قسم بي إلى الصحباء 6 Reference Sentence: إنك تكبر المشكلة. 6 Predicted Sentence: إنك تكبر المشكلة 7 Reference Sentence: يرغب أن يلتقي بك. 7 Predicted Sentence: يرغب أن يلتقي بك 8 Reference Sentence: إنهم لا يعرفون لماذا حتى. 8 Predicted Sentence: إنهم لا يعرفون لماذا حتى 9 Reference Sentence: سيسعدني مساعدتك أي وقت تحب. 9 Predicted Sentence: سيسعدني مساعدتك أي وقت تحب ``` ## Training and evaluation data This model is trained on the Common Voice 11.0 dataset. ## Training procedure The model is trained on 64 cores CPU, Nvidia A100 GPU with 48 VRAM, and 100GB Disk space. The GPU utilization reached 100%. Please check the training hyperparameters below. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1952 | 1.6630 | 1000 | 0.1843 | 14.0098 | | 0.0339 | 3.3261 | 2000 | 0.1921 | 12.6150 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.2.0 - Datasets 2.20.0 - Tokenizers 0.19.1